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Introduction

Retinal waves an are example of spontaneous correlated activity in the developing central ner-
vous system, and are believed to play a role in the refinement of retinal projections. This activity
occurs in developing neural circuits prior to visual stimulus. The waves are the result of neigh-
boring retinal cells spiking in a coordinated fashion which can spread across the entire retina.
Here we study the transient cholinergic network which exists in the starburst amacrine cell (SAC)
layer in rodents in post-natal days 1-10 (so called stage II waves). [1]

Aims
•Develop simple mathematical framework capable of recapitulating dynamics of retinal waves
• Investigate role of cell intrinsic noise and cell-cell variability in wave properties
• Bifurcation analysis: determine parameter regimes capable of supporting traveling wave so-

lutions

Mathematical framework

In contrast to previous models of retinal waves (see [2] for a review), following the suggestion
in [3] that retinal waves are mediated by extrasynaptic transmission of acetylcholine, our model
takes the form of a reaction-diffusion system:

Vt = f (V,R,E)
Rt = εg(V,R,E)
Et = h(V,R,E)+ ε
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(dimensionless)
V : fast voltage variable
R: slow ‘refractory’ variable
E: ACh concentration
0 < ε � 1: separation of time
scales

To facilitate mathematical analysis, build heuristic model based on Fitzhugh-Nagumo (FN) neu-
ron dynamics, with the following choice of f ,g and h:

f (V,R,E) =V (1−V )(V −A)+E−R
g(V,R,E) = BV −CR
h(V,R,E) = βG(V )− γE.

where
G(V ) =

1
1+ exp[−κ(V −V0)]

,

0 < A < 1,
B,C,β ,γ > 0.

Deterministic models

Figure 1: Wave formation shown at successive times.
Here A = 0.2,B = 0.2,C = 0.0001,ε = 0.1,β = 0.4;γ =
.7,κ = 100,V0 = 0.3. Color represents voltage.

Deterministic simulations produce waves (Fig-
ure 1) but exhibit two unrealistic qualities:
1. Once a wave is initiated it covers entire do-

main: stage II waves are known to exhibit
power-law size distributions.

2. A strong tendency to generate spiral waves:
the FN model does not encompass a sAHP
current present in SACs which generates
long refractory periods.

⇒ The shifting boundaries and power-law dis-
tributed sizes and speeds of retinal waves need
(a) cell-intrinsic noise or cell-cell variability and
(b) a long, spike-size dependent refractory pe-
riod in order to desynchronize the waves and
prevent spirals.

Before turning to stochastic models the wave properties of the deterministic model are stud-
ied. We use asymptotic and numerical continuation methods to study our FN equations in one
spatial dimension.

Singular construction of traveling pulse
By extending the analysis outlined in [4], scaling variables appropriately and setting ε = 0 the
inner and outer systems are obtained:

Inner system
In regions where diffusion is large, let τ = t,ξ = (x−
c(R)t)/ε, to give

−cV ′ = f (V,R,E)
−cR′ = 0
−cE ′ = h(V,R,E)+E ′′,

where ′ = ∂/∂ξ . At a fixed refractory variable R, wave
speed c(R) is computed by finding heteroclinic orbits con-
necting rest state to excited state. This provides a thresh-
old refractoriness R∗|c(R∗) = 0 for regions, above which,
waves cannot propagate into. Singular construction of a
traveling pulse is possible if there exists R∗ such that the
speed of the up-jump is exactly opposite the speed of the
down-jump: c(0) =−c(R∗). (Figure 2)
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Figure 2: Wave speed c as a function of re-
covery variable R. Red curves represent our
model, blue the standard FN model with volt-
age diffusion. Dotted curves represent c =
±c(0). Here A = 0.15,β = 0.2,γ = 0.7,κ =
100,V0 = 0.3. Computed in AUTO

Outer system
In between up- and down- jumps dynamics are given by a one dimensional system (original
scaling):

R′ = G±(R),

where ′ = d/dt, G+ and G− are excited and recovery branches. This provides estimates for the
interwave-interval and wave duration by computing time spent in excited and recovery states
(on G+ and G− branches):

tex =
∫ R+

R0

dR
G+(R)

, trec =
∫ R∗

R+

dR
G−(R)

.

where
R0 = rest value,
R+ = excited value at down-jump,
R∗ = end of recovery value.

Non-singular construction of traveling pulse

Beyond the singular limit, the entire pulse can be studied by switching to a traveling frame
(x, t)→ (x−ct, t) and looking for stationary solutions (Vt = 0,Rt = 0,Et = 0) to obtain a four dimen-
sional dynamical system. Traveling pulses represent homoclinic orbits about the unique fixed
point. (Figure 3) The dispersion curve has a similar form to the well studied Fitzhugh-Nagumo
model of excitability, in which the bottom of each curve represents an unstable wave, and the
top represents a stable wave. We conjecture the same behaviour applies in our model. (Figure
4)

Figure 3: Form of traveling pulse for different values of A.
Here ε = 0.1,B = 0.2,C = 0.1,β = 0.2,γ = 0.7,κ = 100,V0 =
0.3. Computed in AUTO
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Figure 4: Wave speed as a function of parameter A for
different values of ε. The ε = 0 case is calculated from
the singular perturbation analysis above. Computed in
AUTO

Stochastic models
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Figure 5: Simulations with noise. In order, left-right, top-
bottom. Simulation for n = 1; simulation for n = 2; sim-
ulation for n = 3; histogram of wave size distributions for
n = 1,2,3,4, bars show mean and IQR. Zoomed out spa-
tially so simulations show many waves at once. Here A =
0.2,B = 0.2,C = 0.0001,β = 0.4,γ = 0.7,κ = 0.3,V0 = 100.
Color represents voltage.

The size and duration of waves which form de-
pends on the amount of noise which is added to
simulations. At each time step n points on the
grid are chosen and Gaussian noise is added
to V and R variables. Without much noise large
waves form which cover the entire domain and
combine with other waves. With more noise
smaller structures can form with wave size dis-
tributions more closely resembling power-law
distributions observed in vivo. (Figure 5)
The Ford model [3] reports the same result by
adding variability to the refractory time scale for
each cell. This is produced here without assum-
ing cell-cell variability is important. The per-cell
spontaneous activation rate in our simulations
is very low, consistent with physiological record-
ings [3].
Figure 5 demonstrates too much wave activity
– an effect which would be countered by the in-
clusion of a sAHP current.

Conclusions and Future Work

We have developed a mathematical framework to study models of retinal waves. A mixture of
asymptotic and continuation analysis allows for the computation of wave speed, wave duration
and interwave-intervals as a function of model parameters. Simulations show type and amount
of noise in system has large effect on wave structures. Analysis is to be repeated for more
biophysically based model which includes a sAHP current, the stability of waves in one dimen-
sional model is to be studied and the role noise plays in determining wave properties is to be
more fully investigated.
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