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Introduction

Retinal waves an are example of spontaneous correlated activity in the developing central ner-
vous system which drive activity-dependent developmental programs prior to visual stimulus. [1]
In order to understand their role in development, it is important to know: how do spatiotemporal
wave properties depend on underlying physiology?

Generation of stage II waves [2]
• Spontaneous activity in Starburst Amacrine Cells (SACs) initates waves
•Dense, recurrent cholinergic connections between SACs propagates activity laterally
• Slow after-hyperpolarization of SACs creates shifting wave boundaries

Aims
•Develop simple, biophysical model capable of recapitulating dynamics of retinal waves
•Determine parameter regimes in which retinal waves exist
•Characterize spatiotemporal patterns of retinal waves

Model of stage II retinal waves

SACs obey Morris-Lecar dynamics [3] with an additional ACh conductance:

CmVt =−gCa(V −VCa)−gK(V −VK)−gM
L (V −VL)−gACh(V −Vsyn)

where

gACh(A) = gM
ACh

δA2

1+δA2,

At = D∇
2A+β (1+ e−κ(V−V0))−1− A

τACh
,

τRRt = Λ(V )(R∞−R)+αS(1−R),

St = γ(1+ e−κ(V−V0))−1− S
τS
.

• Synaptic conductance gACh depends
on local, extra-cellular concentration of
acetylcholine A.
•Dense, lateral connectivity of SACs (not

having axonal processes) modelled by
the extra-synaptic diffusion of ACh. [2]
• Slow after-hyperpolarization variable S

activated by depolarization and evolves
on timescale τS, slower than timescale of
R, τR.

Simulations
The model reproduces the spatiotemporal patterns of physiological waves.

Figure 1: Simulated stage II retinal waves. A 64x64 grid sim-
ulates 4mm2 area of retina, such that each grid point cor-
responds approximately to one SAC. Each SAC depolarizes
spontaneously at an average rate of once every 15 minutes.

Figure 2: Wave statistics following 5000s of
simulated retinal wave activity.

The developing retina as an excitable medium

For what parameters can physiological waves exist?
•Wave boundaries determined by refractory state of network – in a sufficiently non-refractory

medium waves propagate large distances without decay
• Amacrine cell network modelled as a reaction-diffusion system

Singular perturbation analysis

Vt = f (V,R,S,A),
At = k(V,R,S,A)+∇

2A,
Rt = εg(V,R,S,A),
St = ε

2h(V,R,S,A).

• Separate fast (voltage, V , and ACh concentration, A) and slow
systems (refractory variables, R and S)
• As ε → 0, both Rt→ 0 and St→ 0, only V and A are dynamic
• Stationary solutions in travelling frame, ξ = x− c(R)t, t = t ′, are

travelling fronts of speed c.
•Heteroclinic orbits connect rest and excited fixed points, comput-

ing using HomCont in AUTO.
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Figure 3: Wave front dynamics. a) Fast-slow dynamics in Fitzhugh-Nagumo example b) trajec-
tory of wave-front dynamics c) wave-front

Excitability thresholds

Parameters where traveling fronts have a positive velocity are those where medium is excitable
– supports waves able to travel across retina without decay.

Figure 4: Thresholds at which medium is ‘excitable’ – points to the right of each curve support forward travelling
waves

Critically configured spontaneous activity

What determines their spatiotemporal properties?

•Hennig et al 2009 [3] observe power-law distributed wave size events from in vitro recordings,
similar to avalanches of spontaneous activity observed in cortex [4]
•When does our model exhibit power-law distributed wave sizes?
•Drossel-Schwabl forest fire model (DS-FFM), a canonical model of self-organized criticality

(SOC): [5] on a square lattice, at each time step
1. Each excitable cell spontaneously fires with some probability f
2. Each firing cell ‘ignites’ its excitable nearest neighbours
3. Each firing cell becomes refractory (on next time step)
4. Each refractory cell becomes excitable with some probability p

On 2D lattice, SOC observed when: [5]

( f/p)−1/2� p−1� f−1. (1)

In our model, on a simulated lattice of n2 cells,
representing L2 mm2 of retina:

f =
πn2c2τ2 f̂

L2 , p =
τ

ρ
,

for wave speed at rest refractory state c, per cell
spontaneous firing rate f̂ , spike duration τ, and
effective refractory period ρ.
From (1), observe SOC when:[

πn2c2τ f̂ ρ

L2

]−1/2

� ρ

τ
� L2

πn2c2τ2 f̂
,

where c, τ and ρ are all relateable to parameters
of underlying model through either simulation or
numerical continuation.
In DS-FFM expect power-law distributed wave
sizes with scaling exponent α = −1.15, as θ =
p/ f → ∞.
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Figure 5: Shaded region indicates where (1) is satisfied.
A θ = 1.5, log-linear least squares fit estimates α =−1.45
(R2 = 0.95); B θ = 3, log-linear least squares fit estimates
scaling exponent α = −1.10 (R2 = 0.95); C θ = 10, log-
linear least squares fit estimates α =−1.14 (R2 = 0.96).
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Figure 6: B For θ →∞, network approaches critical state
characterized by power-law distributed events.

Summary

• A combination of singular perturbation analysis, simulation and numerical continuation can
be used to understand complex spatiotemporal patterns of stage II retinal waves
• Spontaneous activity in developing retina can be interpretted in terms of a classical self-

organized critical forest fire model
• Future work: further statistical tests of power-law size distributions, criteria for other behaviour

regimes (spiral waves, bimodal wave-size distributions)
The authors would like to thank Kevin Ford for discussions and feedback on this work.
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