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Introduction

Retinal waves an are example of spontaneous correlated activity in the developing central ner-
vous system which drive activity-dependent developmental programs prior to visual stimulus. [1]
In order to understand their role in development, it is important to know: how do spatiotemporal
wave properties depend on underlying physiology?

Generation of stage Il waves [2]

e Spontaneous activity in Starburst Amacrine Cells (SACs) initates waves
e Dense, recurrent cholinergic connections between SACs propagates activity laterally
e Slow after-hyperpolarization of SACs creates shifting wave boundaries

Aims
e Develop simple, biophysical model capable of recapitulating dynamics of retinal waves

e Determine parameter regimes in which retinal waves exist
e Characterize spatiotemporal patterns of retinal waves

Model of stage Il retinal waves

SACs obey Morris-Lecar dynamics [3] with an additional ACh conductance:

CoVi = —gca(V—Veo) —gx(V = Vi) — " (V = V1) — gach(V — Vi)

e Synaptic conductance gsc, depends
where on local, extra-cellular concentration of
SA2 acetylcholine A.

= g%c;ll T SA2’ e Dense, lateral connectivity of SACs (not
) V—von—1 A having axonal processes) modelled by
A, =DV?A+B(1+e ) =~ the extra-synaptic diffusion of ACh. [2]

gacn(A)

TACh
R, = A(V)(R.—R) +aS(1 —R), e Slow after-hyperpolarization variable S
(V-1 O activated by depolarization and evolves
St — ’}/(1 —|— e 0 ) - —. . .
Ts on timescale tg, slower than timescale of
R, Tp.
Simulations

The model reproduces the spatiotemporal patterns of physiological waves.
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Figure 1: Simulated stage Il retinal waves. A 64x64 grid sim- %0 s 100 70 0 1 2 3 4

interwave interval (s) wave duration (s)

ulates 4mnry area of retina, such that each grid point cor- _ o |
responds approximately to one SAC. Each SAC depolarizes Figure 2: Wave statistics following 5000s of
spontaneously at an average rate of once every 15 minutes. ~ Simulated retinal wave activity.

The developing retina as an excitable medium

For what parameters can physiological waves exist?

e Wave boundaries determined by refractory state of network — in a sufficiently non-refractory
medium waves propagate large distances without decay

e Amacrine cell network modelled as a reaction-diffusion system

Singular perturbation analysis

e Separate fast (voltage, V, and ACh concentration, A) and slow
systems (refractory variables, R and S)

e As € = 0, both R, — 0 and S, — 0, only V and A are dynamic

e Stationary solutions in travelling frame, & = x—c¢(R)t,t =1, are
travelling fronts of speed c.

Vt — f(VvRWS?A)a

A, =k(V,R,S,A) + VA,
R, =¢€g(V,R,S,A),

S, = €’h(V,R,S,A).

e Heteroclinic orbits connect rest and excited fixed points, comput-
Ing using HomCont in AUTO.
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Figure 3: Wave front dynamics. a) Fast-slow dynamics in Fitzhugh-Nagumo example b) trajec-
tory of wave-front dynamics c) wave-front

Excitability thresholds

Parameters where traveling fronts have a positive velocity are those where medium is excitable
— supports waves able to travel across retina without decay.

0.8/

0.7} 0.7

0.61 0.6

0.5t 0.51

8 8
| 0.4 L
(L) °| 0.4

delta = 50
delta= 25 0.31
delta= 15 — VO = -04
delta= 10 0.2 — VO = -0.2
delta= 5 — VO = 0.0

0.31

0.21

0.4 0.4l

(0, 0) 0.05 0.10 0.15 0.20 0.25 0.30 (0, 0) 0.05 0.10 0.15 0.20 0.25
G_ACh G_ACh

Figure 4: Thresholds at which medium is ‘excitable’ — points to the right of each curve support forward travelling
waves

Critically configured spontaneous activity

What determines their spatiotemporal properties?

e Hennig et al 2009 [3] observe power-law distributed wave size events from in vitro recordings,
similar to avalanches of spontaneous activity observed in cortex [4]

e When does our model exhibit power-law distributed wave sizes?

e Drossel-Schwabl forest fire model (DS-FFM), a canonical model of self-organized criticality
(SOC): [5] on a square lattice, at each time step
1. Each excitable cell spontaneously fires with some probabillity f
2. Each firing cell ‘ignites’ its excitable nearest neighbours
3. Each firing cell becomes refractory (on next time step)
4. Each refractory cell becomes excitable with some probability p

On 2D lattice, SOC observed when: [5]
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Figure 5: Shaded region indicates where (1) is satisfied.
for wave speed at rest refractory state c, percell 49— 5. log-linear least squares fit estimates a = —1.45

spontaneous firing rate f, spike duration 7, and (r2=0.95); B 6 = 3, log-linear least squares fit estimates
effective refractory period p. scaling exponent o = —1.10 (R* = 0.95); C 6 = 10, log-
From (1), observe SOC when: linear least squares fit estimates a = —1.14 (R* = 0.96).
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where ¢, T and p are all relateable to parameters
of underlying model through either simulation or
numerical continuation.

In DS-FFM expect power-law distributed wave
sizes with scaling exponent o« = —1.15, as 6 =

p/f — e

Sy wave size (mm2)

Figure 6: B For 6 — =, network approaches critical state
characterized by power-law distributed events.

e A combination of singular perturbation analysis, simulation and numerical continuation can
be used to understand complex spatiotemporal patterns of stage Il retinal waves

e Spontaneous activity in developing retina can be interpretted in terms of a classical self-
organized critical forest fire model

e Future work: further statistical tests of power-law size distributions, criteria for other behaviour
regimes (spiral waves, bimodal wave-size distributions)
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