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Abstract

The Bcl-2 family of 15 or more proteins are key regulators of the intrinsic apoptosis

pathway. Elucidating the mechanisms of two of these proteins (Bak and Bax) used to

control mitochondrial outer membrane permeabilisation and subsequent cytochrome

c release is therefore the focus of significant research. The role played by the ‘direct’

and ‘indirect’ Bak activation mechanisms is yet to be fully elucidated. Insights can

be gained, however, by studying a reduced experimental system in which only a

subset of Bcl-2 family proteins are present. A mouse liver mitochondria (MLM)

assay to monitor Bak-mediated permeabilisation provides such a system.

This thesis develops a deterministic mass-action model of the relevant Bcl-2

family protein interactions in order to better understand the reduced mitochondrial

system in vitro and therefore the intrinsic apoptosis pathway in vivo. By focusing

on a simplified experimental system, a relatively complete, realistic model is con-

structed which is also tractable in terms of the number of unknown parameters and

experimental verifiability. Issues in constructing a relevant and realistic model are

discussed.

The ‘direct’ and ‘indirect’ activation hypotheses are compared. The ‘direct’ ac-

tivation mechanism is shown to be a required component of the model in matching

with available experimental data. Previous studies have investigated the role bista-

bility plays in apoptosis regulation. The models determined here do not exhibit any

bistable phenomena while still being able to mimic the MLM experimental system

and provide a mechanism for the regulation of cytochrome c release, calling into

doubt the need for a Bcl-2 ‘bistable-switch’ mechanism. A related model of Bcl-2

interactions in vivo is investigated and demonstrated to be capable of bistability.

In this case the direct activation model is found to act as a more robust bistable

switch, compared with an indirect activation model, in line with previous studies.
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Other properties of the models are investigated, such as their parametric robustness,

which reveals the components of the models which are most sensitive to variation.
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Chapter 1

Cells and cell-death

Before introducing the project and its aims, the relevant biology, experiments and

methodology will be described. Important and unfamiliar words are emphasised

with their first use. Footnotes are provided to elucidate concepts which may be

unfamiliar to readers with little biological background.

1.1 Life inside a cell

Cells are the fundamental building blocks of all life. The human body consists of ap-

proximately 100 trillion cells of approximately 200 distinct cell types. A typical cell

weighs 1 ng and has a radius of 10 µm. Like larger organisms that are composed of

many cells, an individual cell grows, reproduces (divides), absorbs nutrients, moves

and dies. Cells of multicellular organisms contain various subcomponents known as

organelles. These include the nucleus, housing a copy of the organism’s genetic ma-

terial within chromosomes, and mitochondria, which use oxygen to produce a source

of chemical energy for the rest of the cell.1 The solution in which organelles are

situated is known as the cytosol.2 The cytosol and organelles (except the nucleus)

are collectively referred to as the cytoplasm. The cytoplasm is enclosed in the cell

membrane (Figure 1.1).

1Mitochondria contain their own genome in a single, circular chromosome. They share many
properties with bacteria and it is hypothesised mitochondria were once separate organisms which
were taken in by the host cell – a key example of endosymbiosis.

2Cyte- (Greek): container, body, cell.
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Figure 1.1: Diagram of a eukaryotic cell (a cell possessing organelles). The organ-
ism’s DNA is housed in the nucleus (a) along with smaller structures known as
nucleoli (b). Organelles are situated in a solution known as the cytosol (c) and are
enclosed in the cell membrane (d). Other components include mitochondria (e),
protein translating machines known as ribosomes (f), a cytoskeleton (g) and others
(h).

Underlying this broad structure a cell is a hive of chemical activity – an as-

toundingly complex system of closely regulated biochemical reactions. The key

macromolecules regulating, or catalysing, these reactions are proteins. A protein

is a chain of amino acids linked by peptide bonds. Each of the 20 possible amino

acids have different properties (e.g. size, hydrophobicity, charge) which determine

a unique shape, or conformation, the protein can fold itself into. The structure of

a protein determines what it can interact with and therefore its function. Smaller

functional units of amino acids which may be common to more than one protein are

known as protein domains.

The complement of proteins found within each cell is determined by instructions

‘written’ in the organism’s chromosomal DNA. In this context a gene is defined as

a sequence of DNA nucleotides which correspond to a sequence of amino acids – a

set of instructions for building a protein. Sometimes, the distinction between a gene

and the protein it encodes is not made explicitly and needs to be inferred from the

given context. The human genome consists of approximately 23,000 genes, which

in turn encode an even larger number of proteins. A good introduction to these

2



preliminaries is found in Gonick and Wheelis [1].

The connection between a cell’s response to both external and internal stimuli

and the underlying biochemical reactions is understandably a very complex one.

This thesis intends to help unravel the mechanism behind one cell response – that

of apoptotic cell death. In this chapter we delve into what is known about apoptosis

and how we intend to improve its understanding.

1.2 Apoptosis

Apoptosis3 is a cellular process of ‘programmed’ cell death occurring in multicellular

organisms [2]. A number of reasons may necessitate a cell committing itself to death.

These include the removal of superfluous cells in the development of organs or digits,

and the maintenance of homoeostasis in which apoptosis provides a complementary

but opposite function to cell division, or mitosis. A stressed or damaged cell may

undergo apoptosis to prevent damaged cells developing into cancer or perhaps to

prevent the spread of a virus. Examples of such stresses include infection, starvation

and DNA damage from ionising radiation. Developing immune cells, known as

lymphocytes, which are ineffective or potentially damaging to the organism are

removed via apoptosis on a daily basis [3].

Morphological features of apoptosis include the condensation of the nucleus and

cytoplasm, fragmentation of the nucleus and the separation of protuberances on the

cell surface. These protuberances form membrane-bound cell remnants, known as

apoptotic bodies, containing mostly intact cell components and organelles (Figure

1.2). Apoptotic bodies are phagocytised by neighbouring cells thereby recycling cell

material.4 This is in contrast to premature cell death, or necrosis, in which cells

simply break open to release damaging contents into the surrounding tissue, and

often resulting in inflammation. Necrosis occurs to the detriment of the organism

while apoptosis occurs to the benefit – in general.

A number of diseases are associated with the malfunctioning of apoptotic path-

ways. These include autoimmune diseases such as lupus and rheumatoid arthritis

[5] and cancer [6]. The tumour suppressor protein p53 is so-named because it is up-

3Apoptosis (Greek): the dropping off of petals from a flower or leaves from a tree.
4Phago- (Greek): akin to devour or eat.
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Healthy Apoptotic

Figure 1.2: Changes resulting from apoptosis. Healthy cells are shown on left,
apoptotic cells are shown on right. Upper right frame shows condensation of plasma
membrane into ‘blebs’. Reproduced from Green [4].

regulated following DNA damage and induces apoptosis to prevent tumourigenesis

[7]. Any disruption in the function of p53 can therefore result in tumour growth.

Many viruses have the ability to inhibit apoptosis, for example by encoding viral

homologues of Bcl-2 family pro-survival genes which are described below [8].

Two largely independent pathways operate to instigate apoptosis: the ‘intrinsic’

or ‘mitochondrial’ or stress-induced and the ‘extrinsic’ pathway. The intrinsic path-

way is the more evolutionary conserved, ancient pathway. It is activated by a diverse

range of intra-cellular stresses resulting in a complex series of interactions between

proteins in the Bcl-2 family which act as an ‘on/off’ switch in deciding whether the

cell commits to apoptosis. The intrinsic pathway initiates apoptosis through the

release of the protein cytochrome c (and other proteins) from mitochrondria and is

hence also termed the ‘mitochondrial’ pathway. This process is known as mitochon-

drial outer membrane permeabilisation (MOMP). The extrinsic pathway is induced

when death receptors on the cell surface bind to ligands from the Tumour Necrosis

Factor (TNF) family of cytokines5. Both pathways result in the activation of pro-

5A cytokine is a signalling protein used for intercellular communication in the immune system
– similar to a hormone but generally held at lower concentrations except in specific circumstances,
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zymogens, and two principal pathways activate those
involved in apoptosis (Figure 1). The more ancient,
evolutionarily conserved ‘stress’ pathway, which is
triggered by developmental cues and diverse intracel-
lular stresses, activates caspase-9 on a scaffold formed
by Apaf-1 in response to cytochrome c released from
damaged mitochondria. This pathway, also termed
‘mitochondrial’ or ‘intrinsic’, is primarily regulated by
the Bcl-2 family. The ‘extrinsic’ pathway, on the other
hand, is induced when the so-called ‘death receptors’ on
the cell surface are engaged by cognate ligands of the
tumor necrosis factor (TNF) family. This pathway
instead activates caspase-8 (and caspase-10 in humans),
through adaptor proteins that include Fas-associated
death domain protein (FADD). Once activated, caspase-9
or -8 (-10) activates downstream ‘effector caspases’ (i.e.
caspases-3, 6 and 7), which provoke cellular destruction
by cleaving several hundred cellular proteins. The two
pathways are largely independent, as overexpressed Bcl-2
does not protect lymphocytes from apoptosis induced by
death receptor ligands (Strasser et al., 1995; Huang et al.,
1999). In certain other cell types (e.g. hepatocytes),
however, the two pathways intersect, because caspase-8
can process the pro-apoptotic Bid into its active
truncated form (tBid) (Figure 1). To prevent cata-
strophic unscheduled cell death, both pathways are
tightly regulated, at multiple steps.

The Bcl-2 family, which includes 17 or more members
in mammalian cells (Cory and Adams, 2002), functions

as a ‘life/death switch’ that integrates diverse inter- and
intracellular cues to determine whether or not the stress
apoptosis pathway should be activated. The switch
operates through the interactions between the proteins
within three subfamilies. Whereas the pro-survival
subfamily (Bcl-2, Bcl-xL, Bcl-w, Mcl-1, A1 and also
Bcl-B in humans) protects cells exposed to diverse
cytotoxic conditions, two other subfamilies, many
members of which were identified as Bcl-2-binding
proteins, instead promote cell death. Members of the
Bax-like apoptotic sub-family (Bax, Bak and Bok) are
very similar to Bcl-2 in sequence, particularly in three
conserved ‘Bcl-2 Homology’ regions (BH1, BH2 and
BH3), and both Bax and Bak have structures that
closely resemble their pro-survival relatives (Suzuki
et al., 2000; Moldoveanu et al., 2006). The other
proapoptotic subfamily, the ‘BH3-only proteins’, in-
cludes at least eight members: Bik, Bad, Bid, Bim, Bmf,
Hrk, Noxa and Puma. These proteins are largely
unrelated in sequence to either Bcl-2 or each other,
apart from the signature BH3 domain, which is essential
for their killing function (Huang and Strasser, 2000;
Willis and Adams, 2005).

Importantly, stress-induced apoptosis requires both
types of pro-death proteins: the BH3-only proteins seem
to act as damage sensors and direct antagonists of Bcl-2
and the other pro-survival proteins, whereas the Bax-
like proteins, once activated, act further downstream
(Figure 1), probably by permeabilizing the mitochon-
drial outer membrane and perhaps also by perturbing
the endoplasmic reticulum (ER)/nuclear envelope. The
crucial battle seems to be fought on these membranes
and most family members either normally reside on their
cytosolic surfaces, or rapidly congregate there after an
apoptotic signal. Most bear a C-terminal hydrophobic
sequence that targets and/or anchors them to those
membranes, but full integration of the multidomain
proteins probably involves insertion of additional
helices in the molecules (Kim et al., 2004; Annis et al.,
2005), and that also might hold for tBid, which is
myristoylated (Zha et al., 2000) but lacks a C-terminal
anchor. Integration into the outer mitochondrial mem-
brane may require components of the general import
machinery such as TOM22 or TOM70 (Bellot et al.,
2006; Chou et al., 2006).

As reviewed recently (Fesik, 2005; Hinds and Day,
2005), illuminating structural studies have revealed that
the BH1, BH2 and BH3 domains in each pro-survival
family member fold into a globular domain having a
hydrophobic groove on its surface, to which a BH3
domain, an amphipathic alpha helix of B24 residues,
can bind (Sattler et al., 1997; Liu et al., 2003). This
coupling neutralizes the pro-survival family member. In
healthy cells, the pro-survival proteins act at least
predominantly by preventing Bax or Bak from perturb-
ing the integrity of intracellular membranes, in parti-
cular the outer mitochondrial membrane.

Bax and Bak appear to be largely redundant in
function. Whereas the loss of either single gene has little
effect in most cells and tissues (Bax is required for
spermatogenesis and in certain neuronal cells), the

Bcl-2

caspases 3, 6, 7

caspase-9 caspase-8

Apaf-1 FADD

Apoptosis

Death receptorsBH3

Bax

Cytokine deprivation
Intracellular damage

Oncogenes

Stress pathway Death receptor pathway

cyt C
tBid

Figure 1 Pathways to cell death. The stress pathway is initiated by
BH3-only proteins (‘BH3’), which inactivate the Bcl-2-like proteins,
keeping them from restraining Bax and Bak. Bax or Bak can
permeabilize the mitochondrial outer membrane, releasing cyto-
chrome c, which provokes Apaf-1 (apoptotic protease-activating
factor 1) to activate caspase-9. The ‘death receptor’ pathway is
activated when ligands of the TNF family engage with and
aggregate their cognate receptors on the cell surface and activate
caspase-8 via adaptor proteins that include FADD. The two
pathways are largely independent, but in certain cells the death
receptor pathway engages the stress pathway via a cleaved form of
the BH3-only protein Bid (tBid), which can engage Bcl-2 homologs
and perhaps Bax (see text).

Bcl-2 apoptotic switch in cancer
JM Adams and S Cory

1325

Oncogene

Figure 1.3: The ‘intrinsic’ and ‘extrinsic’ pathways operate largely independently of
each other to induce apoptosis via the activation of caspases. The stress pathway is
activated as a result of various intracellular stresses. The death receptor pathway is
activated by extracellular TNF ligands binding to their receptors on the cell surface
(adapted from [9]).

teases named caspases which cleave multiple proteins to mediate cell deconstruction

(Figure 1.3 and [9]). A nice overview of apoptosis and cell death more generally can

be found in Green [4].

1.2.1 Bcl-2 family proteins

The Bcl-26 gene which is activated by a chromosome translocation in human follic-

ular lymphoma was first discovered in 1984 [10], and was identified as a regulator

of apoptosis in 1988 [11]. Bcl-2 family proteins share one or more of four so-called

Bcl-2 homology (BH) domains named BH1, BH2, BH3 and BH4. (Figure 1.4.) De-

pending on their function and BH domains Bcl-2 family genes can be categorised

as either pro-survival, pro-apoptotic BH3-only or pro-apoptotic Bak and Bax (and

possibly Bok but this will not be discussed).

i.e. infection.
6Bcl-2: short for B-cell lymphoma 2.
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and Bax, as its expression fails to re-sensitise bak–/–bax–/– fibroblasts
to apoptotic stimuli (our unpublished data).

Loss of mitochondrial OM integrity ensures cell death
As discussed above, the ‘point of no return’ in stress-induced
apoptosis is irreparable damage to the mitochondrial OM. Breaching
the OM releases proteins from the mitochondrial intermembrane
space into the cytosol to rapidly activate caspases. The major
weapon in the mitochondrial arsenal is cytochrome c, which, when
introduced into the cytosol, binds to Apaf-1 and instigates the
assembly of the apoptosome and the activation of caspase-9,
caspase-3, caspase-6 and caspase-7. Activated caspases rapidly
cleave multiple substrates (Dix et al., 2008; Luthi and Martin, 2007)
and cause the cell to become packaged into ‘bite-sized’ pieces that
display ‘eat-me’ signals for resident phagocytes, which take up and
degrade the remnants of apoptotic cells (Ravichandran and Lorenz,
2007). Notably, these caspases act downstream of the point of no
return and, therefore, blocking their activation by genetic ablation
of either apaf1 or caspase9 delays cell death but does not prevent
a loss of clonogenicity or eventual cell death (Ekert et al., 2004).
This caspase-independent cell death is generally slower than
apoptosis and resembles necrosis in that the cell dies due to loss of

mitochondrial function (Chautan et al., 1999). From a functional
perspective, this bifurcated attack on cell viability – shutting down
mitochondrial function while activating deadly caspases – makes
sense, as it guarantees the death of unwanted cells.

It is noteworthy that a role for MOMP is not universally
conserved in Bcl-2-regulated apoptosis (Fig. 1). For example,
although the apoptosis that occurs during the development of the
nematode Caenorhabditis elegans is exquisitely controlled by
Bcl-2 homologues, it does not appear to involve cytochrome c
(Yuan, 2006). C. elegans expresses three Bcl-2 homologues (the
BH3-only proteins Egl-1 and Ced-13, and the pro-survival protein
Ced-9) but no bona fide Bak-like or Bax-like protein that induces
MOMP. Even a pro-apoptotic mutant form of Ced-9 does not cause
mitochondrial disruption (Hengartner and Horvitz, 1994). Likewise,
MOMP does not have a confirmed role in cell death in Drosophila
melanogaster (Dorstyn et al., 2002; Zimmermann et al., 2002).
Although MOMP might not be needed in the cell death programs
of the small, short-lived nematode and fly, mitochondria are still
involved because several of their Bcl-2 homologues localise to the
OM. Furthermore, Ced-9 has been shown to regulate mitochondrial
fission (Delivani et al., 2006), suggesting that Bcl-2 homologues
have an important role at mitochondria that is independent of
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Apaf-1
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Ced-3

Caspase-3, -6, -7
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Caspase-8
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Cytochrome c

(Apoptosome)
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Fig. 1. The Bcl-2 protein family controls the
mitochondrial pathway of apoptosis.
Mammalian apoptosis occurs via the intrinsic
and extrinsic pathways, whereas a single
pathway operates during the development of
the nematode C. elegans. Each pathway
culminates in the activation of the proteolytic
caspases, but only the intrinsic pathway
involves MOMP regulation by Bcl-2
proteins. Several proteins homologous to
those involved in the intrinsic pathway are
important for development in C. elegans,
although there is no true Bak or Bax
homologue and no role for MOMP. FADD,
Fas-associated death domain; FASR, Fas
receptor; TNFR, tumour necrosis factor
receptor; TRAILR, TNF-related apoptosis-
inducing ligand receptor.

Pro-survival proteins
Bcl-2, Bcl-xL, Bcl-w, Mcl-1, A1

BH3-only proteins
Bim, Bid, Puma, Bad, Bmf,
Hrk, Noxa, Bik

Bax/Bak
Bax, Bak (and Bok?)

BH3 BH1

Groove

BH2 TM

TM

TM

BH4

α2 α3

BH3

BH3 BH1 BH2

α1 α4 α7 α8α5 α9α6

Groove

Fig. 2. Sequence and structural homology of Bcl-2 family
proteins. Mammalian Bcl-2 proteins are categorised into
three subclasses based on their function and the number of
Bcl-2 homology (BH) domains: pro-survival proteins,
BH3-only proteins and Bax/Bak proteins. Many members
also possess a C-terminal hydrophobic transmembrane
(TM) domain that can anchor proteins in the mitochondrial
OM. Bak, Bax and the pro-survival proteins each adopt
similar α-helical structures (Bcl-2 α-helices 1-9 are
indicated). Interactions between different family members
can occur via binding of the BH3 domain to the
hydrophobic surface groove.
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Figure 1.4: Bcl-2 family genes are divided into three categories. Members which
form a hydrophobic groove are able to bind the BH3 domain of other Bcl-2 members.
Some have a transmembrane (TM) domain attaching the protein to the mitochon-
drial outer membrane [12].

The BH3-only proteins are largely unrelated in peptide sequence to both them-

selves and to other Bcl-2 family members, with the exception of the BH3 domain,

and act as damage sensors in the cell. The BH3 domain is an amphipathic7 alpha

helix8 of approximately 24 amino acids.

The pro-survival proteins are so named because they protect the cell when ex-

posed to cytotoxic stresses and do so by engaging with the pro-apoptotic proteins.

The BH1, BH2 and BH3 domains in pro-survival proteins as well as in Bak and Bax

fold into globular proteins containing a hydrophobic groove on its surface. A protein

with an exposed BH3 domain is able to bind to this groove, allowing for interaction

between Bcl-2 family members. Thus, the pro-survival proteins and Bak and Bax

are very similar in sequence, particularly in the conserved BH domains, and also in

their molecular structure.

Bak and Bax are mostly redundant in function with the removal of only one

having little effect in many cell types. Removal of both genes however, results

in a number of developmental abnormalities, as Bak−/− Bax−/− mice die around

birth [13]. Bak is an integral membrane protein found on the cytosolic face of

mitochondria (MT), whilst Bax is cytosolic and migrates to the mitochondria on

receiving cytotoxic signals. For this reason Bak is more open to study and will

be the focus of this thesis. To distinguish pro-apoptotic Bax and Bak from the

7Amphipathic: possessing both hydrophobic and hydrophilic domains.
8Alpha helix (α-helix): a coiled secondary protein structure, like a spring.
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pro-apoptotic BH3-only proteins both Bax and Bak will be described as effector

molecules.

During apoptosis, Bak and Bax undergo a major conformation change – to the

activated forms – that then oligomerise to form a pore in the outer membrane and

release proteins from the intra-membrane space [14]. In particular, cytochrome c

is released which subsequently binds to Apaf-1 and results in the construction of

the ‘apoptosome’. The apoptosome activates cysteine proteases known as caspases

which cleave hundreds of cellular proteins ensuring the destruction of the cell. Dis-

ruption of the mitochondrial outer membrane is considered the ‘point-of-no-return’.

Due to the Bcl-2 family’s intimate role in the regulation of apoptosis, a full

understanding of its members is important in developing effective cancer therapies.

Many tumours have defective apoptosis pathways due to defects in the upstream

p53 pathway mentioned in Section 1.2, and many have excessive levels of Bcl-2 or

related pro-survival proteins. Provided the remaining apoptotic machinery remains

operational, however, proteins that mimic the action of BH3-only proteins should

be able to induce apoptosis in such tumour cells. The selectivity with which BH3-

only proteins bind to pro-survival proteins raises the possibility of creating anti-

cancer drugs which target the specific Bcl-2 family members most responsible for

specific tumour types, thereby reducing the effect of such drugs on normal cells. One

promising ‘BH3 mimetic’ is ABT-737 which binds strongly to Bcl-2 family members

Bcl-2, Bcl-xL and Bcl-w [15], analogues of which are in clinical trials.

1.2.2 Activation of Bak and Bax

How effector proteins are activated to induce MOMP is a controversial issue – reviews

can be found in [16, 17]. Research has been complicated by the size of the Bcl-2

family and the differing affinities with which they bind to each other. However,

it is known that early in apoptosis Bax removes its transmembrane (TM) domain

from its hydrophobic surface groove, migrates from the cytosol to the mitochondrial

membrane and inserts its TM domain into the OM. Bak, on the other hand, is

already found attached to the OM and its surface groove is vacant.

Dewson et al [14] propose that a key step in the activation of Bak is the exposure

of the BH3 domains. This allows each activated Bak molecule to form symmetric
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homo-dimers – in which each molecule’s BH3 domain binds to another’s hydrophobic

surface groove. Indeed, blocking exposure of the domain prevented MOMP, as did

addition of an antibody against the Bak BH3 domain. As the hydrophobic surface

groove in pro-survival proteins is known to be the binding site of BH3-only proteins,

there is mounting evidence that all interactions between Bcl-2 family members occur

via a similar BH3:groove interaction.

The nature and role of the interactions between effector molecules with both

pro-survival and BH3-only proteins has yet to be fully elucidated. In particular two

important hypotheses have been proposed:

• The indirect model posits that activated effector molecules are suppressed by

continuously binding to pro-survival proteins, preventing homo-dimerisation

(of Bak or Bax) which would otherwise occur ‘by default’. BH3-only proteins

induce apoptosis by binding competitively to pro-survival proteins, displacing

Bak or Bax. As interactions of varying affinities are observed between differ-

ent BH3-only and pro-survival proteins, it is hypothesised that a combination

of BH3-only proteins are required to neutralise all pro-survival proteins and

encourage Bak/Bax homo-dimerisation. A key problem with the indirect hy-

pothesis is the small amount of evidence that endogenous Bak and Bax are

sequestered by pro-survival proteins prior to the onset of apoptosis.

• The direct model proposes that BH3-only proteins engage effector molecules

directly to induce their activation, homo-oligomerisation, and pore formation.

The role of pro-survival Bcl-2 members in the direct model is to sequester BH3-

only proteins, ensuring a reasonable level of BH3-only molecules are required

for apoptosis to occur. Bim and Bid have been shown to induce conforma-

tional changes in Bak and Bax and are thus termed direct activators. Other

BH3-only proteins are termed sensitisers for their ability bind and occupy

the pro-survival proteins and so to increase sensitivity to Bim and Bid. Di-

rect interactions between BH3-only proteins and effector molecules has been

difficult to observe so the direct model has remained somewhat controversial.

More recently however evidence has supported the direct activation hypothesis

[18, 19] (Figure 1.5). The focus of this study is on the relative importance of

each model in apoptosis.
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With recent evidence in mind, a unified model was the focus of the study by

Llambi et al [20]. In a unified model two roles or modes for pro-survival proteins

can be identified. When acting under mode 1 the pro-survival proteins complex

with BH3-only protein, inhibiting their direct activation of Bak or Bax. When acting

under mode 2 the pro-survival proteins complex with active Bak or Bax, preventing

their homodimerisation. The importance of each mode in a given situation is yet to

be determined.

It is important to note that the bulk of the work presented here was performed

when the direct and indirect terminology was standard and a unified model had

not been fully considered – different ‘modes’ of pro-survival action had not been

introduced. Whether a particular Bcl-2 interaction is labelled as being direct or

indirect or, mode 1 or mode 2, is semantic and is not as important as the interactions

themselves. That said, given the changing terminology, exactly what is meant by

direct and indirect model in this thesis and how it relates to recent unified models

is made explicit in later chapters.

In addition to indirect and direct activation of effector molecules there is evi-

dence that Bak and Bax can spontaneously activate under certain conditions, e.g.

under heat [21]. Auto-activation, where activated Bak or Bax molecules engage with

inactivated Bak or Bax, is also possible [22].

1.3 Understanding a simplified mitochondrial sys-

tem of ‘apoptosis’

As mentioned above, two difficulties in elucidating the precise mechanisms by which

the Bcl-2 family regulates apoptosis are the number of Bcl-2 family members and

the differing affinities these members have for one another. Given these difficulties,

it is helpful to study a reduced system in which only a few Bcl-2 family members are

present, so as to limit the interactions between individual members. Experiments

with isolated mouse liver mitochondria (MLM) provide such an assay. The MLM

system is well suited since it contains significant endogenous levels of Bak, a low

level of Bcl-xL and no detectable levels of any other Bcl-2 family members [23]. In

this assay, MOMP is dependent on Bak, and can be regulated by addition of purified
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2805Bak and Bax conformation change

Towards a unified model of Bak and Bax activation and
regulation
Exactly how Bak and Bax are initially activated has been hotly
debated, and has been reviewed in detail elsewhere (Chipuk and
Green, 2008; Fletcher and Huang, 2008; Leber et al., 2007). Briefly,
according to the direct model, certain activator BH3-only proteins
(tBid, Bim and perhaps Puma) directly bind to Bak and Bax to
trigger their conformational change and oligomerisation. According
to the indirect model, BH3-only proteins bind to pro-survival
proteins and cause them to release activated Bak or Bax. In these
models, the main role of pro-survival proteins is either to sequester
BH3-only proteins (direct model) or to sequester Bak and Bax
(indirect model). Efforts to verify either model in physiological
settings have been thwarted by the multiplicity of Bcl-2 family

members and the selective binding between them. For example, the
finding that tBid and Bim are the most potent of the BH3-only
proteins has been attributed either to their ability to directly activate
Bak and Bax (direct model) or to their ability to bind to all pro-
survival proteins (indirect model).

A concern with the direct activation model is that it is difficult
to detect the binding of tBid or Bim to Bak or Bax. One explanation
for why this is the case is that the interaction may be transient –
a ‘hit-and-run’ mechanism. Although the occurrence of such a
transient interaction is difficult to prove or disprove, it may be
feasible based on a BH3:groove interaction. For example, the
activating BH3-only protein might bind to the Bax groove,
displacing the TM domain – acting as the initial ‘hit’. Subsequent
Bax BH3 eversion may then disrupt the groove to displace the
activator BH3-only protein – acting as the ‘run’. Another concern
with the direct activation model is that apoptosis is not abrogated
in bid–/–bim–/– mice and cells, indicating that direct activation of
Bak or Bax by tBid or Bim is not essential for apoptosis to occur
(Willis et al., 2007). However, these knockout studies do not
exclude the possibility that other direct activators (such as p53),
post-translational modifications or spontaneous activation of Bak
or Bax may compensate for the loss of Bid and Bim (Chipuk et
al., 2004; Kim et al., 2006; Linseman et al., 2004). Conversely, a
problematic aspect of the indirect activation model is that only
minimal Bak and Bax appear to be pre-bound to pro-survival
proteins in healthy cells. However, even if a small amount of Bak
or Bax was pre-bound to pro-survival proteins, BH3-only proteins
might displace Bak and Bax, which could then go on to auto-
activate more Bak and Bax (Ruffolo and Shore, 2003; Tan et al.,
2006; Willis and Adams, 2005).

As neither model of Bak and Bax activation fully explains all
observations, aspects of both might hold true (Grills et al., 2008;
Leber et al., 2007). Fig. 6 illustrates a summary of much of the
available data regarding Bak and Bax activation and regulation by
other Bcl-2 family members. The central role for Bak and Bax
homo-oligomerisation is included beause this step appears to be
crucial for apoptosis (Dewson et al., 2008; George et al., 2007).
Also included is the possibility that Bak and Bax are metastable
and may become activated spontaneously, together with the
possibility that activated Bak and Bax may feed back to auto-activate
the inactive pool. Clearly, however, further definition of Bak and
Bax conformational changes, and the nature of their binding to other
Bcl-2 family members, is needed to verify exactly how Bak and
Bax are regulated. This is not just a semantic issue; it has important
implications for the development of therapeutic compounds that
target this pathway. For example, whereas recently developed BH3
mimetics appear to kill cells solely by binding to pro-survival
proteins (Oltersdorf et al., 2005; van Delft et al., 2006), it is
important to understand how this then leads to activation of Bak
and Bax.

Breaching the mitochondrial barrier is a ‘complex’
issue
Activated Bak and Bax form complexes in the mitochondrial OM
lipid bilayer that appear responsible for the egress of large folded
proteins from mitochondria, including cytochrome c and DIABLO.
In synthetic vesicles, the presence of oligomerised Bax can cause
the release of 70-250 kDa dextrans (Kuwana et al., 2002; Lovell
et al., 2008; Terrones et al., 2008). How Bak and Bax oligomers
cause MOMP is not known, although ion channels, proteinaceous
pores, lipid pores and lipid destabilisation are proposed mechanisms
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Fig. 6. Towards a unified model of Bak and Bax activation and regulation.
Elements of the two models of Bak and Bax activation (direct and indirect) are
combined with evidence that these proteins can undergo spontaneous
activation and auto-activation. Bak is illustrated, although it is probable that
Bax is activated in a similar manner. In this unified model, a low level of
spontaneous Bak activation (i) is normally quenched by binding of the
activated form to pro-survival proteins. Apoptotic signalling upregulates
‘activator’ BH3-only proteins such as tBid and Bim and/or ‘sensitiser’ BH3-
only proteins such as Bad and Noxa. These BH3-only proteins bind to pro-
survival proteins, for which they have high affinity. For example, Bad binds
strongly to Bcl-xL and Noxa binds strongly to Mcl-1, whereas tBid and Bim
bind to all pro-survival proteins. tBid and Bim may also bind and activate Bak
in a ‘hit-and-run’ manner (ii), especially if they are not efficiently sequestered
by pro-survival proteins. Activated Bak can also auto-activate the inactive pool
(iii). As activated Bak accumulates, if not sequestered by pro-survival proteins,
it homo-oligomerises to form symmetric dimers, and then higher-order
oligomers that can form apoptotic pores in the mitochondrial OM.
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Figure 1.5: Mechanisms of Bak activation. A conformational change in Bak protein
to expose the BH3 domain (red triangle) allows Bak homo-oligomerisation. Sufficient
levels of activated Bak and subsequent Bak homo-oligomerisation form an apoptotic
pore on the mitochondrial membrane. The role of BH3-only proteins are to either
(indirect) disrupt the Bak:pro-survival complex or to (direct, ii) interact with Bak
directly in a hit-and-run activation step. Spontaneous and auto-activation (i and
iii) have also been observed [12].
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recombinant9 BH3-only proteins (e.g. tBid) and prosurvival proteins (e.g. Mcl-1).

The assay has been used extensively to investigate the role complexes between

effector and pro-survival proteins (e.g. Bak bound to Mcl-1) play in apoptosis

regulation. Which BH3-only proteins can create and/or disrupt these complexes

and how?

1.3.1 Experimental Methodology

Experimental data used to develop the models comes from mouse liver mitochondria

experiments and protein binding measurements (surface plasmon resonance instru-

ments) which are described briefly here.

MLM experiments

Mouse liver mitochondria are extracted from hepatocytes (liver cells) and are added

to a physiological buffer. Mitochondria are diluted to 1mg of total protein per

millilitre of solution. In this dilute solution approximately 10nM of the pro-apoptotic

Bak and approximately 3nM of the pro-survival Bcl-xL are estimated to be present.

Other Bcl-2 members are added during experiments: one of the BH3-only proteins

tBid or tBIM; and the pro-survival protein Mcl-1. Samples taken are subject to a

western blot analysis which determines the presence or absence of proteins or protein

complexes of interest. An example is presented in Figure 1.6. The details of the

particular experiments modelled are described on pages 55 and 97.

Some recombinant proteins added to the MLM incubations are not ‘native’ pro-

teins but are modified. In particular, tBIM is a chimera, in which the BH3 domain

of the wild-type10 tBid has been replaced by the Bim BH3 domain. In addition,

Mcl-1 does not possess a transmembrane domain which would allow it to anchor in

the mitochondrial membrane.

9A recombinant protein is one which has been artificially synthesised by introducing ‘recombi-
nant’ DNA into a suitable host cell which translates the DNA to protein. Recombinant protein
may be modified from their wild-type counterparts.

10the genotype(s) which occurs in nature with highest frequency
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Figure 1.6: Western blot of an experiment performed in the MLM system. The top
rows indicate the initial concentration (nM) of recombinant Bcl-2 family members
spiked into the system (pro-survival Mcl-1 with the BH3-only protein tBid or tBIM)
for each experiment. Following a two hour incubation, samples are analysed by
western blot. The dark bands indicate the presence cytochrome c (Cyt c). Here cyt
c mitos indicates the cytochrome c present within the mitochondrial membrane, cyt
c super indicates the cytochrome c which has been released into solution following
MOMP. Unpublished experiment by Dr. Ruth Kluck, WEHI.

Protein binding between Bcl-2 family members

Protein association and dissociation rates can be determined using surface plasmon

resonance (SPR) technology (Biacore AB corporation www.biacore.com). Biosen-

sor technologies measure protein-protein interactions and protein binding affinities.

Uses of such SPR technology include the evaluation of macromolecules, for example,

ensuring recombinant proteins have similar structure to their native counterpart by

testing their affinity for their natural ligands. More relevant here, SPR-based tech-

nology can measure equilibrium constants, as well as measuring kinetic on and off

rates between two species (e.g. BH3 peptides and Mcl-1 protein).

An SPR-based instrument consists of a small flow cell (approximately 20-60 nL

in volume) in which one molecule (e.g. Mcl-1) being studied is immobilised on a

sensor surface. An analyte (e.g. Bim BH3) is introduced in solution (the sample

buffer) which flows through the cell (1-100 µL.min−1). The analyte binds the ligand

attached to the sensor surface. The resulting increase in protein on the surface affects

the refractive index. This optical effect is detected by the SPR instrument and can

be used to quantify the extent of binding in real-time.11 The resulting sensorgram

11Light incident on a noble metal (i.e. gold)-glass interface at a critical angle, θspr, excites
surface plasmons (mobile electrons on the metal surface) causing them to resonate. At θspr the
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measures resonance units (RU), where one RU corresponds roughly the binding of 1

pg protein/mm2. Following sufficient time for the analyte to have reached a steady-

state at the surface, a running buffer is introduced containing no analyte. In this

way the rate at which ligand and analyte dissociate is also observed (Figure 1.7).

(a)

Improving biosensor analysis

David G. Myszka*
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The quality of optical biosensor data must be improved in order to characterize the mechanism and rate

constants associated with molecular interactions. Many of the artifacts associated with binding data can be

minimized or eliminated by designing the experiment properly, collecting data under optimum conditions

and processing the data with reference surfaces. It is possible to globally fit high-quality biosensor data with

simple bimolecular reaction models, which validates the technology as a biophysical tool for interaction

analysis. Copyright! 1999 John Wiley & Sons, Ltd.
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Introduction

While commercial biosensors (BIACORE and IAsys) are
simple to operate, accurately interpreting binding reactions
is not always straightforward. Since the majority of
published biosensor data do not fit a simple bimolecular
interaction model (A! B = AB), many investigators are
concerned about the validity of biosensor analysis. How-
ever, the inability to fit data to a simple model is often a
result of how the experiments are run and not a flaw in the
technology. Many investigators collect data under condi-
tions that are not suitable for measuring binding kinetics.
There are a number of experimental artifacts that can
complicate biosensor analysis, including surface-imposed
heterogeneity, mass transport, aggregation, avidity, crowd-
ing, matrix effects and nonspecific binding (Myszka, 1997;
Morton and Myszka, 1998). Improving the design of
biosensor experiments, as well as improving the way
binding data are collected and processed, can eliminate
most of these artifacts (Myszka, 2000). By improving the
quality of the sensor data, we have described a number of
systems with simple interaction models (Myszka et al.,
1996; Roden and Myszka, 1996; Myszka et al., 1997; Stuart
et al., 1998). For example, Fig. 1 shows a data set for an IL-
2–receptor interaction globally fit with a simple interaction
model (Myszka, 2000). Note that the association and
dissociation phases responses for each IL-2 concentration
are described very well by this simple model. This article
highlights the key steps required to improve the quality of
data when the goal is to interpret the binding kinetics
recorded on biosensors.

Step 1. Improving the experimental
design: Generating high quality biosensor
data takes work

Start with good reagents

The quality of biosensor data is directly proportional to the
quality of the reagents. For a detailed biophysical study,
both analyte and ligand should be chemically and
conformationally pure. In order for data to fit a simple
bimolecular reaction model, the analyte and ligand most be
monomeric in solution and form a 1:1 complex when mixed.
Investigators often assume but rarely demonstrate that their
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(b)

Figure 1.7: (a) Schematic diagram of SPR-based instrument. Changes in the refrac-
tive index of the the gold-glass interface are detected and used to infer total protein
bound to surface (Image reproduced from [24]). (b) Example sensorgram showing
both the association and dissociation of protein complex in response units. Black
curves represent the average of four repeat injections for six different analyte con-
centrations. Grey curves represent a best fit of the data using a simple bimolecular
reaction model (A + B = AB) (Image reproduced from [25]).

reflected beam of light reduces in intensity since energy is transferred to the plasmons. Thus θspr
can be detected by a dip in reflected intensity. Since θspr depends on the refractive index of the
surface, which in turn depends on the amount of protein bound to the surface, measurements of
this critical angle can be used to infer the amount of protein bound to the surface.
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1.4 Thesis aims

Having outlined the necessary biology and the experimental methodology, the aims

of this thesis can now be described.

Key Aim

In this thesis, mathematical modelling, in combination with Bcl-2 family bind-

ing data and MLM experimental data, will be used to investigate the feasibility of

proposed mechanisms of apoptosis regulation via Bcl-2 family interactions, thereby

providing a well-defined framework with which to understand and propose future ex-

periments. By focusing on a simplified experimental system we are able to construct

a relatively complete, realistic model which is also tractable in terms of the number

of unknown parameters and experimental verifiability. This work is in collaboration

with biologists at the Walter and Eliza Hall Institute of Medical Research, ensuring

the modelling assumptions are biologically realistic.

In particular they are to:

1. Develop a representative kinetic model of a subset of Bcl-2 family interac-

tions in order to perform in silico12 experiments in the MLM system. This

will involve determining how kinetic binding measurements provided by the

Biacore machine are best integrated with information obtained from MLM

experiments.

2. Investigate proposed mechanisms of Bak activation. This involves comparing

both the direct and indirect activation mechanisms. The most explanatory

model in terms of understanding MLM experiments can be identified and

thereby provide information about the relative importance of each mechanism

in a given apoptotic setting.

3. Investigate the role of Bak auto-activation in MLM experiments. By com-

paring how well kinetic models both with and without a Bak auto-activation

mechanism fit the above experiments, we can determine the importance of

12Almost Latin for ‘in silicon’, meaning to perform on computer. Compare with in vivo (‘in the
living’) meaning an experiment performed within a living organism and in vitro (‘in the glass’)
meaning an experiment performed within a controlled environment like a test-tube.
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auto-activation in the simplified MLM assay. The role of bistability in an ex-

perimentally determined kinetic model, as well in models more generally, can

also be investigated. The concept of robustness will be investigated both in

terms of parameter variation and the model’s capacity for bistability.

1.5 Thesis outline

With these aims in mind the remainder of this thesis proceeds as follows:

Chapter 2 provides the necessary mathematical background and context of

models for systems of biochemical reactions. The theory behind kinetic modelling

is reviewed.

Chapter 3 develops a kinetic model of Bcl-2 family members relevant for un-

derstanding experiments performed in the MLM assay.

Chapter 4 investigates the use of Biacore data in simulating experiments. The

physical transport of protein in the MLM experiments is studied. Kinetic parame-

ters are estimated from experimental data. The role direct and indirect activation

mechanisms play in understanding MLM experiments is compared.

Chapter 5 investigates the mathematical properties of the kinetic model built,

including the stability of steady states and the potential for bistability in the model.

The sensitivity of the model to parameters is investigated and the role of auto-

activation in the fitted models is studied. Parametric robustness is investigated.

Both the fitted direct and indirect models are used to predict a disruption experiment

in the MLM system.

Chapter 6 draws conclusions about the present body of work and proposes

directions in which the project can continue.
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Chapter 2

Mathematical formulation

The purpose of this chapter is to provide the necessary mathematical background

required to describe a system of biochemical reactions, such as a set of Bcl-2 family

interactions, in a deterministic fashion. Simple examples are developed and the

mathematics necessary to model a biochemical system of arbitrary size and topology

is described.

2.1 Dynamical systems

A dynamical system is a system which changes, or evolves, with time. Many physical

processes can be modelled as dynamical systems, including the motion of planets,

the swinging of a pendulum and the competing populations of foxes and rabbits.

This chapter will only consider deterministic1 models, in which the evolution of the

system is determined entirely by its present state and a set of rules. By specifying

how a system changes with time we hope to gain an understanding of its long-term

behaviour and the range of phenomena it can exhibit. For our purposes these rules

1In contrast to a stochastic model.
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take the form of ordinary differential equations (ODEs). Let:

dx1

dt
= f1(x1, x2, . . . , xn), (2.1.1)

dx2

dt
= f2(x1, x2, . . . , xn),

...

dxn
dt

= fn(x1, x2, . . . , xn),

be a system of ordinary differential equations describing the time evolution of x =

(x1, x2, . . . xn). This is also written
dx

dt
= f(x) where x(t) : R→ Rn and f(x) : Rn →

Rn.2 In the present context each xi may represent the concentration of a chemical

within a cell. By also specifying the initial conditions, x0 = (x1(0), x2(0), . . . , xn(0)),

we are describing an initial value problem (IVP). Solutions to a specified initial value

problem can be called trajectories. Provided f(x) is Lipschitz continuous these

solutions exist and are unique [26].

This formulation is more general than it may seem. For instance, time depen-

dence in f(x) is included by simply adding xn+1 = t and
dxn+1

dt
= 1 to the system.

Higher order ordinary differential equations can also be written in the form (2.1.1).

For instance, the equation of motion for the simple harmonic oscillator is:

d2x

dt2
= −k2x,

and can also be written as:

dx1

dt
= x2,

dx2

dt
= −k2x1.

A system is described as linear if each fi(x) is a linear function of x. Otherwise

it is a non-linear system. A key feature of linear ODEs is that the sum of any set of

solutions is itself a solution. This allows us to break the problem into pieces, solve

the pieces separately and recombine each solution to obtain a final answer. Solutions

2Where R denotes the set of real numbers.
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of linear ODEs are therefore limited in form and hence in dynamic behaviour. Non-

linear ODEs do not share this property and as a result allow for the possibility of

more complex and interesting behaviour. A linear system is exactly equal to the

sum of its parts. A non-linear system is in some way more than the sum of its parts.

2.1.1 Long-term behaviour

For the general system described in (2.1.1), a key question is what characterises the

long-term behaviour? Does it reach equilibrium, diverge or oscillate indefinitely?

By classifying the fixed points of the system we can begin to understand how it will

behave. A fixed point, or steady state is any x∗ which satisfies

[
dx

dt

]
x=x∗

= f(x∗) =

0.

In order to determine the stability of a steady state, x∗, we ask what happens

when the system is perturbed by a small amount, x = x∗+u. Does the perturbation

grow or diminish with time? Expanding a Taylor series about the steady state we

obtain:

dx

dt
=
du

dt
= f(x∗ + u)

= f(x∗) + Df(x∗)u + . . .

≈ Df(x∗)u. (2.1.2)

The fact that f(x∗) = 0 is used to obtain a linear approximation for the system.

The term Df(x∗) is the Jacobian matrix of f evaluated at x∗ and is given by:

Df(x∗) =


df1

dx1

df1

dx2
. . . df1

dxn
df2

dx1

df2

dx2
. . . df2

dxn
...
dfn
dx1

dfn
dx2

. . . dfn
dxn


x=x∗

. (2.1.3)

This approximation is valid provided the steady-state is suitably well-behaved. In

the context of systems of interacting animal populations, the Jacobian matrix is

known as the community matrix [27]. Henceforth we will simply write A = Df(x∗).

For a linear dynamical system f(x) = Ax for all x. We propose the evolution of the
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perturbation, u, with time has the general solution:

u = v1 exp(λ1t) + v2 exp(λ2t) + . . . (2.1.4)

where λ1, λ2, . . . , λn are distinct eigenvalues and respective eigenvectors v1, v2, . . . ,vn

of n × n matrix A. The solution (2.1.4) can be verified by direct substitution into
du
dt

= Au. For non-distinct eigenvalues, the solution also includes tk exp(λt) terms

which will not affect our conclusions. The distinct eigenvalue case is presented for

clarity. The form of (2.1.4) makes it clear that |u| will diminish if all eigenvalues

have negative real part and will grow if at least one eigenvalue has positive real

part. The former and latter cases correspond to stable and unstable steady states

respectively. The borderline case in which all eigenvalues have non-positive real part

requires more care. A more detailed classification of steady-states based on lineari-

sation and inspection of eigenvalues can be achieved for 2-dimensional systems [27,

p. 504]. For higher dimensional systems, however, no such theory exists.

The classification of steady-states is an important step in analysing the behaviour

of a dynamical system: to do this one must identify the steady-states by solving

f(x) = 0 and compute the eigenvalues of the Jacobian matrix at each steady-state

solution.

2.1.2 Hysteresis and bistability

Dynamical systems may have more than one stable steady-state and it is possible

that the number of steady-states depends on the model parameters. To demonstrate

how this can manifest itself we consider the chemical reaction model of [28]. A set

of chemical reactions between species S,X, Y and P occur in a container of fixed

volume:

S + Y
k1→ 2X,

2X
k2→ X + Y,

X + Y
k3→ Y + P,

X
k4→ P,
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Figure 2.1: Steady-state concentration, x∗, of system (2.1.5) as a function of sub-
strate concentration, s. Solid lines represent stable steady-states while dotted lines
represent unstable steady-states. The up and down arrows represent jumps in con-
centration that occur when s is increased/decreased beyond a threshold value. Here
k1 = 8s, k2 = 1, k3 = 1, k4 = 1.5 and k5 = 0.6. Model and parameters taken from
[28].

where S and P denote substrate and product respectively and their concentrations

are kept constant. The ODEs governing the system are:

dx

dt
= 2k1y − k2x

2 − k3xy − k4x+ k5, (2.1.5)

dy

dt
= k2x

2 − k1y,

for concentrations x and y of species X and Y respectively. Note there is a produc-

tion rate k5 for species X which is not listed in the above set of question. There

exists at most three steady-states, depending on parameters, whose stability can be

computed as described in Section 2.1.1 and which are illustrated in Figure 2.1 for a

particular set of parameters {ki}.
These parameters have been chosen so that the system has one stable steady state

for extreme values of substrate concentration (here considered a parameter) while
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for an intermediate range of values the system has two stable steady states. This

phenomenon is called bistability. In the bistable range of parameters, the steady-

state which the system approaches will depend on which state the system is ‘closest

to’ initially. Here, the unstable steady-state acts as a separatrix, delineating regions

which tend towards one stable state or the other. Therefore, when the substrate

concentration is gently perturbed, such that the steady-states are gently changed,

the new steady-state that the system approaches will depend on which steady-state

it was ‘closest to’ previously. In this sense the system remembers where it was. This

memory is known as hysteresis.

When the substrate concentration is perturbed beyond the bistable region the

system will suddenly shift to the only steady-state remaining. This ‘switching’

behaviour which results in a sudden jump between an ‘on’ and an ‘off’ state after a

sufficiently large perturbation in some model parameter has been investigated in a

number of biological systems.

2.1.3 Conservative systems

Dynamical systems can conserve certain quantities which can affect the behaviour

of the system.

Definition 2.1.1. A system,
dx

dt
= f(x), is called conservative if there exists a

conservative quantity, E(x), such that on trajectories of x we have
dE

dt
= 0. E(x)

is required to be non-constant on every open set.

The requirement that E(x) be non-constant on every open set removes trivial

conservative quantities which would render every system a ‘conservative’ system.

The E here is chosen to correspond to ‘energy’ as total energy is often a conserved

quantity in physical systems.

Lemma 2.1.1. A conservative system has no stable steady-states.

Proof. The following argument is from [29, p. 160]. Suppose such a fixed point, x∗,

did exist. Then there exists a ‘basin of attraction’: the set of points, B, such that

x ∈ B implies x → x∗ as t → ∞. All points in B must have the same energy

since they all end at the same point. This contradicts our definition of E(x) being

non-constant on all open sets. We must conclude that x∗ is not stable.
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Within the framework modelling systems of biochemical reaction the existence of

conservation relations implies the Jacobian matrix, A, is degenerate and has a zero

eigenvalue. The steady-states of these systems therefore correspond to the borderline

case mentioned in Section 2.1.1 in which the steady state is either non-isolated or

requires analysing higher order terms of (2.1.2).

We have only touched on a few aspects in the study of dynamical systems which

are relevant in our later analysis. The preceding sections are in no way meant to

represent a comprehensive overview of the field of dynamical systems (refer to [29]

for an introduction).

2.2 Biochemical modelling

This section details how to model a system of biochemical equations. The primary

focus is on describing the concentration of a set of reacting species and the rate or

velocity at which each reaction occurs. The notation and structure of this overview

follows predominantly [30].

Let x(r, t) ∈ Rn
≥0 represent the vector of n species’ concentrations in Molar

at time t and position r = (x, y, z) within the volume, where Rn
≥0 represents the

non-negativity of each chemical concentration. It is convenient to assume that the

volume being modelled is fixed and spatially homogeneous such that x(r, t) = x(t).

‘Bulk’ spatial inhomogeneities can be considered, maintaining this simplification,

by compartmentalising the space. Species are transported between compartments,

each of which is considered to be well-mixed. For compartments of different volume,

this can only be adopted by either using units of moles or by dividing the reaction

rates in each compartment by their volume.

The stoichiometry3 of a reaction is the ratio at which reactants combine to form

products. For elementary reactions, the stoichiometry corresponds to the molecu-

larity of the reactants and products and is therefore always an integer. This is not

necessarily the case for larger, ‘composite’ reactions. In the reaction:

2 H2 + O2 → 2 H2O, (2.2.1)

3Stoichiometric (Greek): from stoicheion, meaning element, and metric, meaning measure.
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the substances H2, O2 and H2O have stoichiometric coefficients −2, −1 and 2, re-

spectively, since reactants are assigned negative coefficients and products positive.

It is convenient to write down the vector stoichiometric coefficients of each species

such that, for (2.2.1):

S =

 −2

−1

2

 . (2.2.2)

When considering a set of r reactions, the set of corresponding columns form the

n × r stoichiometric matrix, S. The element sij then represents the stoichiometric

coefficient of species i in reaction j.

The reaction rate, in Molar per second, can be defined in terms of the reaction

extent:

v(t) =
1

V

dξ

dt
,

where ξ is defined as:

ξ(t) =
1

si
[Ni(t)−Ni(t0)],

which represents the change in moles of species i between time t and a reference

time t0. The variable si is the stoichiometric coefficient of species i in the specified

reaction and Ni(t) is the amount in mole of species i at time t. Let v(t) ∈ Rr

represent the reaction rate vector. The rate of change of a substance, xi, is given

by:
dxi
dt

=
r∑
j=1

sijvj,

so that the system dynamics are therefore represented compactly as:

dx

dt
= Sv.

2.2.1 Kinetics

The reaction rate vector, v(x,k), is a function of the concentrations and a set of

kinetic rate parameters k. The study of the rates of chemical reactions is known as

kinetics.
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Mass-action

The law of mass action states that the rate of a bimolecular reaction is linearly

proportional to concentration of both species. Give this assumption we derive a

simplified form ([31]). Consider the following irreversible reaction:

A + B→ C. (2.2.3)

Over a short period ∆t, let ∆C represent the increase in concentration of C. We

claim that ∆C is proportional to the number of relevant molecular collisions that

occur within ∆t multiplied by the probability the reactants have sufficient kinetic

energy to overcome the activation energy of the reaction. An approximation for the

number of collisions which occur is r1AB∆t for some constant of proportionality

r1 and A and B are the concentration of species A and B in Molar, respectively.

Denote by r2 the probability a collision has enough energy to initiate a reaction,

giving:

∆C = r2.r1AB∆t,

and therefore:
∆C

∆t
= kAB,

where constant k is identified as the rate constant, r1r2, and has units M−1s−1. As

∆t→ 0 we obtain the reaction rate:

dC

dt
= kAB

which corresponds to the form expected from (2.2.4).

Slightly more generally, the law, as proposed in [32], considers the reaction be-

tween reactants A and B and products X and Y:

µA + ηB
k+

�
k−

αX + βY.

Constants k+ and k− are the forward and reverse reaction rates. The law states that
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the reaction proceeds in the forward direction4 with rate v:

v = k+A
µBη − k−XαY β. (2.2.4)

The system reaches dynamic equilibrium – the point at which the forward and

reverse reaction occur at the same rate – when J1 = 0. Substituting this into (2.2.4)

we obtain:

KD =
kd
ka

=
AµBη

XαY β
, (2.2.5)

where KD is known as the equilibrium constant.

For elementary reactions, mass-action kinetics are accurate. For larger, ‘com-

posite’ reactions whose mechanism is unknown, mass action provides only an ap-

proximation. In this case the association of the exponents µ, η, α and β to the

stoichiometric coefficients is an empirical one – some reactions do not observe this

rule and the exponents must be measured experimentally.

Generalised mass-action kinetics

For a system of r reactions, the mass-action kinetics for reaction j can be expressed

as:

vj(x) = kj+

n∏
i=1

x
s−ij
i − kj−

n∏
i=1

x
s+ij
i , (2.2.6)

where kj+ and kj− are the forward and reverse rate constants. The exponents s−ij
and s+

ij are the orders for the forward and reverse reaction and, for mass-action, are

the stoichiometric coefficient of the reactants and products respectively. Let:

s−ij =

−sij, sij < 0;

0, sij ≥ 0.
, s+

ij =

sij, sij > 0;

0, sij ≤ 0.
,

4The left to right reaction. Which reaction constitutes the forward reaction is merely a matter
of convenience since all reactions technically are reversible to some extent.
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such that sij = s+
ij − s−ij. This is the general law of mass action kinetics [33].

Throughout this thesis the r× 2 matrix k will denote the kinetic parameter matrix:

k =


k1a k1d

k2a k2d

...
...

kra krd

 .

Here, kja and kjd are chosen instead of kj+ and kj− to reflect the association and

dissociation occurring between the Bcl-2 family members later being considered.

Protein-protein interaction kinetics

The preceding sections have dealt with chemical and biochemical reactions in gen-

eral. This thesis is concerned primarily with protein-protein complex association

and dissociation. For proteins A and B forming complex C:

A+B
ka
�
kd

C,

where parameters ka and kd are the association and dissociation rate, or the on

and off rate, respectively. The theory of protein-protein interaction kinetics is less

complete; for reviews refer to [34] and [35]. Most of the preceding arguments ap-

ply to protein-protein interaction kinetics. Though protein association is not an

‘elementary’ chemical reaction, the law of mass action still provides a useful descrip-

tion.5 Also, protein-protein interactions can be affected by restriction to membranes

(e.g. [36]). This thesis will use the generalised mass-action framework to model the

system of protein association and dissociation between Bcl-2 family members.

Limitations

Mass-action kinetics assume that certain environmental factors are fixed such that

the rate parameters are indeed constants and that the system remains well mixed

5Indeed, just as for chemical reactions, activation energies or enthalpies can be measured for
protein-protein associations. The heuristic derivation of the law of mass action presented in Section
2.2.1 can be therefore be applied.
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such that concentrations can be considered spatially homogeneous. Diffusion can

affect not just the validity of the well-mixed assumption but can also impact how

ligands bind to receptors. Depending on the association and dissociation rates, low

diffusivity allows for the rebinding of ligand to receptor before the ligand has the

chance to escape into solution, which can affect the apparent kinetic rates [37].

It is also important to note that the use of differential equations has limits. By

modelling kinetics with differential equations we assume that concentration is a con-

tinuous quantity when of course it is not. Molecules are not indefinitely divisible

objects and at particularly low concentrations stochastic effects may become signifi-

cant. Assuming the volume of a human cell is 10−12L then a concentration of 0.1nM

corresponds to approximately 60 molecules per cell.6 At such concentrations it is

therefore reasonable that a continuous model may fail in some respects and that a

stochastic model is more appropriate. This can be achieved using either a cellular

automata approach (e.g. [38]) or a stochastic modelling approach (e.g. [39, 40]).

2.2.2 Stoichiometry

Independent of the reaction kinetics, the stoichiometric matrix provides information

about the behaviour of a reaction network. Typically, the stoichiometric matrix is

better characterised than the set of kinetic parameters. It is therefore worthwhile

discussing what can be inferred about the dynamics from the stoichiometric matrix

alone.

Conservation relations

During the evolution of the system, it is possible the total concentration of a collec-

tion of substances will not change with time as a result of the reaction stoichiometry.

Consequently, a linear combination of some of the species will remain constant. This

provides a set of conservation relations, ei ∈ Rn, each of which can be written as:

gT
i x = Ti = const.

6Let V denote volume, c concentration in Molar, n number of moles, N number of particles
and NA as Avagadro’s constant. If V = 10−12L and c = 0.1nM then n = c× V = 10−22mol hence
N = NA × n = 6.02× 1023 × 10−22 ≈ 60.
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Since gT
i x is a constant for all time it is true that:

gT
i S = 0T. (2.2.7)

The conservation matrix, G, is formed by a complete set of linearly independent row

vectors satisfying (2.2.7) and therefore itself satisfies:

GS = 0,

and:

Gx = T. (2.2.8)

The rows of G provide a basis for the nullspace of ST and using the fundamental

theorem of algebra: rank(G) = n− rank(S). When solving the system of differential

equations rank(G) concentrations can therefore be eliminated from the system.

Section 2.1.3 highlighted a problem in analysing the steady-states of conservative

systems – they are always non-stable. This can be circumvented by considering the

stability of a reduced biochemical reaction system. Rearrange the stoichiometric

matrix, S, so that the top rank(S) rows are linearly independent. The S can be

written as:

S =

[
S0

S′

]
,

and since the rows of S′ are linearly dependent S can be written:

S = LS0 =

[
I

L′

]
S0,

for link matrix L. The dynamical system becomes:

d

dt

[
xa

xb

]
=

[
I

L′

]
S0v.

The evolution of xb is:
dxb
dt

= L′
dxa
dt

,
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and therefore the trajectory xb is:

xb = L′xa + c.

The dynamics is therefore completely determined by the xa. Since S0 is full-rank

with no conservation relations, Lemma 2.1.1 no longer necessarily applies and the

stability of any steady-states can be determined by analysing the reduced system:

dxa
dt

= S0v. (2.2.9)

2.2.3 Sensitivity analysis

Determining which parameters are most sensitive to changes can provide some in-

sight into the ‘robustness’ of the model to parameter variation. This section derives

metrics that will later be used to quantify this general idea of ‘robustness’. For

a given parameter set k and a given time t during a simulation, we compute the

relative change in concentration xi(t) per relative change in reaction rate vj as a

result of a perturbation in parameter kj:

cij(t) =
vj
xi(t)

∂xi/∂kj
∂vj/∂kj

.

In metabolic control analysis (MCA) [30] the cij are termed concentration control

coefficients and are typically computed at the steady-state concentrations and fluxes.

The necessary extensions of MCA to non-steady states is considered in detail in [41].

Here vj denotes the reaction for which kj is a part. Adapting the sensitivity analysis

from [42], we compute the 1-norm of each function cij over a simulation of T seconds:

Cij = ||cij||1 =

∫ T

0

|cij(t)| dt. (2.2.10)

Each Cij gives some measure of how sensitive the evolution of species xi is to changes

in parameter kj near a given set of parameters k. This is therefore a local sensitivity

analysis.

This measure is extended to quantify the overall robustness of each species xi
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and the robustness of the system for a specific set of kinetic parameters ([43]). Let:

x̄(t) =


∆x1(t)/x1(t)

...

∆xn(t)/xn(t)

 , C(t) =


c11(t) . . . c1r(t)

...
. . .

...

c1n(t) . . . cnr(t)

 , v̄(t) =


∆v1(t)/v1(t)

...

∆vn(t)/vn(t)

 ,

and therefore x̄ = Cv̄. For clarity, x̄(t), cij(t), C)(t) and v̄ will be abbreviated to

x̄, cij, C and v̄, respectively. Assuming that the perturbations in kinetic parameters

are independently distributed with zero mean, the expected values 〈∆xi/xi〉 and

〈∆vj/vj〉 are both zero. The variances and covariances of x̄ are:

〈x̄x̄T 〉 = 〈(Cv̄)(Cv̄)T 〉 = 〈C(v̄v̄T )CT 〉.

The reaction rates fluctuate independently so non-diagonal elements of v̄v̄T do not

contribute to 〈x̄x̄T 〉. Assume a common parameter variance v2 = 〈v2
j 〉 for all j.

Therefore:

〈x̄x̄T 〉
v2

= CCT

=


(c1,1)2 + · · ·+ (c1,r)

2 . . . c1,1cn,1 + · · ·+ c1,rcn,r
...

. . .
...

c1,1cn,1 + · · ·+ c1,rcn,r . . . (cn,1)2 + · · ·+ (cn,r)
2


The diagonal elements of CCT can be interpreted as the normalised variance of

species xi caused by perturbations in the reaction rates. From this we can quantify

the average effect a perturbation in kinetic parameter has on a species as:

σ2
i (t) =

1

r

r∑
j=1

[ci,j(t)]
2

The overall variance can be defined as the sum of the individual variances:

σ2(t) =
1

nr
Tr(CCT )
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As in (2.2.10) this is summarised over a simulation of T seconds by computing:

σ2
i =

∫ T

0

|σ2
i (t)| dt, (2.2.11)

and:

σ2 =

∫ T

0

|σ2(t)| dt. (2.2.12)

The metrics (2.2.11) and (2.2.12), in addition to (2.2.10), will be used to quantify

the robustness of the reaction systems for a given set of kinetic parameters.

2.3 Numerics

The majority of mathematical models are too difficult or are impossible to solve

‘exactly’ (solutions having a closed form in terms of known functions), and must

be studied either through asymptotic approximations or numerical approximations.

This thesis uses the latter, which are discussed here.

2.3.1 Numerical Simulation

The bulk of the analysis of Chapter 4 is based on the simulation of dynamical

systems in the form of chemical reaction systems described above. Here we outline

the basics of the numerical methods used in this thesis. The interested reader is

directed to LeVeque [44] for a more comprehensive introduction.

We are interested in solutions to the initial value problem (IVP) of the form:

y′ = f(y, t), y(t0) = y0,

where ′ = d/dt and y can be a vector or scalar. Recall that the IVP will have a

unique solution if the function f(y, t) is Lipschitz continuous in y over our domain

of interest. If the solution at time t > t0 cannot be determined exactly then we can

imagine approximating it with the following scheme:

yn+1 = yn + hf(yn, tn),
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for some sufficiently small step-size h > 0 such that tn = t0 + nh. The notation yn

represents our approximation of y(tn). This is known as the Forward Euler method.

We have replaced the derivative y′ by a finite difference approximation which can be

iterated over efficiently by computer. This is an explicit method since the unknown

term yn+1 appears only on the left hand side. The error introduced by making this

finite approximation is known as the local truncation error (LTE) and in this case

is defined as:

τn =
y(tn+1)− y(tn)

h
− f(y(tn), tn),

which, using the definition of our scheme, is O(h) (first order accurate). A method

is called consistent if the LTE goes to zero as h → 0. Of course, we also want to

know that the global error goes to zero in this same limit. Loosely, a method is said

to be convergent if the error yN − y(T ), T = t0 + Nh at some generic, later time

T > t0 goes to zero as h → 0. We might expect this to be so when a method is

both consistent and when the errors introduced over successive time steps do not

get amplified – when the method is suitably stable. A number of different definitions

of stability lend themselves to different purposes. It is the case that an IVP method

is convergent if it is both consistent and zero-stable.7

The Forward Euler method has a number of drawbacks so is rarely used in

practice. Firstly, it is only first order accurate. And secondly, it is unstable for a

wide range of test problems of the form y′ = λy for some complex parameter λ. For

a fixed λ a method which is stable to the corresponding test problem is known as

absolutely stable. Forward Euler’s region of absolute stability can be calculated to

be |1 + hλ| ≤ 1 – a disk of radius 1 centered at (−1, 0) on the complex hλ plane.

With such a method not only is it unstable for exponentially growing test problems,

if Re(λ) > 0, it is also unstable for exponentially decaying test problems, if Re(hλ)

is too negative. This can greatly reduce the allowed step-size if λ itself has a large

negative real part, in which case h must be chosen to ensure stability and not to

obtain the desired accuracy. This makes the method inefficient. Problems which

may exhibit this rapidly decaying transient behaviour often arise when modelling

7Strictly only true for Linear Multi-step Methods, of which Forward Euler is an example. A
method is zero-stable if it is stable to perturbations in the solution to the trivial test problem
y′ = 0, which is true provided the method satisfies a certain root condition.
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a process acting over two or more different time-scales. Such problems are called

stiff. Knowing if this is the case for the problem being modelled is an important

consideration when choosing which numerical method to use.

A method which does much better on stiff problems is the Backward Euler

method:

yn+1 = yn + hf(yn+1, tn+1),

an implicit method of first order whose region of absolute stability is the region

|1 − hλ| > 1 – the complement of the disk of radius 1, centered at the point (1, 0)

on the complex hλ plane. Backward Euler will fair better on stiff problems because

the region of absolute stability now includes the entire left half plane, so there is no

concern about taking time-steps that are too large to sufficiently resolve any rapidly

decaying transient behaviour. Since the unknown term yn+1 appears now on both

the left and right hand sides of the equation it must be solved for, using Newton’s

root-finding method, for example.

An example of another method is the trapezoidal method, obtained by averaging

the above two methods:

yn+1 = yn +
h

2
(f(yn, tn) + f(tn+1, tn+1)),

which is implicit and second-order accurate. Its region of absolute stability is the en-

tire left half-plane, making it a suitable method for stiff problems also.8 A trapezio-

dal method is used by MATLAB’s ode23t function.

These three examples serve to introduce the basic concepts and issues involved

in employing a numerical method. A vast array of other methods of different error

and stability behaviour exist. Choosing the ‘right’ one depends on knowledge of the

problem at hand and the methods available.

2.3.2 Numerical Continuation

In Section 5.2, analysis performed with the numerical continuation package AUTO

[45] will be discussed. This section introduces briefly what is meant by numerical

continuation. A more detailed overview can be found in [46]. Dynamical systems

8Ignoring for this discussion the fact that the trapezoidal method is not L-stable.
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are typically non-linear and unless they have a specific, well-studied form (such as

a Hamiltonian system), there is typically a limited amount we can infer about the

system without resorting to numerics. For a general dynamical system

u̇ = f(u, λ),

for u ∈ Rn and a parameter λ ∈ R, we are typically interested in the fixed points

0 = f(u, λ).

Of particular interest is how the set of fixed points changes as we vary λ. Continu-

ation methods can help answer this question.

Note that f : Rn+1 → Rn and the aim is to find the set of points γ ∈ Rn+1 such

that

f(γ) = 0.

Application of the implicit function theorem tells us that for points (u, λ) where the

Jacobian
∂f

∂u
is invertible then locally the set γ is unique and is one-dimensional –

it is a smooth curve γ = γ(s), s ∈ R. Such points are referred to as regular points.

Points where the Jacobian is not invertible are known as singular points and can

represent bifurcations of the corresponding dynamical system. Curves of regular

points are known as branches. Numerical continuation characterises these curves.

Predictor-corrector methods

Starting from a known fixed point x0 = (u0, λ0) = γ(s0), most numerical contin-

uation packages use predictor-corrector methods to extend the curve γ(s). As the

name suggests this is broken down into the steps: (i) predict a new point, x0 → xp0

and (ii) correct the prediction xp0 → x1 to ensure f(x1) = 0.

(i) Prediction

One can take as the prediction

xp0 = x0 + hv0,
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where h is some step size and v0 is a vector satisfying

∂f

∂x
(x0)v0 = 0,

such that v0 is pointing in a direction which produces (linear terms considered) the

least change in f(x).

(ii) Correction

To correct the prediction set

f(x1) = 0,

which can be taken as a root-finding problem using the prediction xp0 as an initial

guess. This can be solved using Newton iterations, for example. The form of the

iteration would then be

xn+1
0 = xn0 + J(xn0 )−1F(xn0 ),

where J is the Jacobian of F. The problem with this scheme is that if we set F = f

then J is not a square matrix and so its inverse is not defined. The system can be

augmented to place constraints on how the continuation is to be performed. For

example, take

F =

[
f

g

]
, J =

[
fu fλ

gu gλ

]
.

One choice for the function g would be

g = λ− λn,

where λn is the desired parameter value, such that λn = λn+1 + ∆λ. This simply

increases the parameter λ by a fixed amount with each step; this is called natural

parameter continuation. This is the simplest continuation scheme however it runs

in to trouble if 1/fλ goes to zero. The continuation package AUTO uses a type of

pseudo-arclength continuation instead.
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Identifying bifurcations

The continuation procedure outlined above applies to any curve defined by f(u, λ) =

0 and does not consider the fact that f describes a dynamical system. Therefore,

in order to identify properties of the dynamical system, such as bifurcations, more

tools are required. For different types of bifurcations different test functions are

used which will return zero at a given bifurcation point. That is, for test function

φ : Rn+1 → R we solve the system

f(u, λ) = 0, φ(u, λ) = 0.

So, for example, when a saddle node bifurcation occurs one eigenvalue of the Jaco-

bian goes through zero. A possible test function for these bifurcations is then

ΨSN = det(fu) =
N∏
i=1

λi,

where det(fu) denotes the determinant of the Jacobian matrix fu. Other bifurcations

require other test functions.

Packages such as AUTO also contain routines for other problems such as branch

switching when two solution branches intersect, characterising periodic orbits and

homoclinic orbits. The purpose of this section is to convey the idea of numerical

continuation so these tasks are not discussed here.

2.4 Conclusion

The purpose of this chapter was to provide an overview of the mathematics used

in subsequent chapters. An introduction to the dynamical systems relevant to this

thesis was provided. The formalism for modelling systems of biochemical reactions

was described and issues such as the existence of conservation relations and the

choice of kinetics were discussed. A metric to quantify the concepts of robustness was

developed and the basic concepts behind numerical continuation were introduced.
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Chapter 3

Developing a model of Bcl-2

family interactions

This chapter describes the process of developing a model of the Bcl-2 family inter-

actions. For this we require consideration of the biological and physical aspects of

the system.

3.1 Previous work

A number of studies have developed ODE models of very comprehensive or very

specific aspects of both the intrinsic and extrinsic death pathways.

The studies in [47, 48, 49] provide a dynamical systems analysis of ODE models

of the ‘Bcl-2 switch’. In these, emphasis is placed on the capability of such mod-

els to exhibit bistable behaviour. The possibility of such hysteresis phenomena is

proposed as an explanation for the switch-like behaviour of the mitochondrial apop-

tosis pathway. Studies into bistability in apoptosis more broadly have also been

performed. For example, the study in [50] examines the possibility of bistability

caused by receptor clustering in initiating the extrinsic cell death pathway. The

study in [51] investigates bistability in the intrinsic apoptotic pathway in the pres-

ence of nitric oxide. An alternative to typical numerical continuation analysis, the

study uses chemical reaction network theory to identify the capability for bistability

in the model. The work of Feinburg (e.g. [52, 53]) constructs a species-reaction
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graph with which the potential for multistationarity (and therefore bistability) can

be investigated.

The absence of applicable rate constants and concentrations in vivo makes it

difficult to build detailed, comprehensive and biologically realistic models of the

apoptosis pathways. Instead, the function of the pathway under parametric variation

can be investigated (e.g. [54, 55]). Indeed, the robustness of cellular functions is a

well-recognised feature of living systems. The chaotic, crowded environment inside a

cell does indeed suggest that for any signal transduction pathway to operate reliably

it must be able to work over a wide range of model parameters.1

Albeck et al [58] constructs a comprehensive model of the extrinsic cell death

pathway in an attempt to understand the pathway’s ‘snap-action’ response. Bcl-2

family interactions are a subset of the interactions included. The model is able to

make a number of testable predictions, for instance, proposing that mitochondrial

outer membrane permeabilisation (MOMP) is complete following the assembly of

relatively few pores. Furthermore, the model finds that feedback loops are unneces-

sary to produce a ‘snap-action’ response in the induction of MOMP.

The model of Huber et al [59] considered a spatial-temporal model of MOMP

induced apoptosis which can explicitly model diffusive processes. This model does

not require the assumption that the medium is spatially homogeneous or that mass-

transport effects are irrelevant. The study found that anisotropies which may be

present in cytochrome c concentration are damped and do not affect the subsequent

caspase signalling cascade.

Beyond deterministic models, both stochastic and cellular automata models have

been implemented to model Bcl-2 family interactions [38, 54, 49]. These papers

address similar questions of bistability and robustness to those addressed in deter-

ministic models.

Huber et al [60] and Spencer and Sorger [61] both provide reviews of the math-

ematical studies into apoptosis.

Though there are a number of studies which have constructed Bcl-2 family mod-

els similar to those that will be developed here, to date none of these have been

developed in close collaboration with experiment. In any modelling exercises there

1The idea of robustness has been used to successfully guide searches for plausible and experi-
mentally verifiable ranges of parameters in other pathways [56, 57].
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exists a trade-off between the need for sufficient scope and the need for sufficient

detail and experimental data required to build a relevant and realistic model. The

present work represents a good compromise in both of these aspects.

3.2 Biological considerations

An important consideration in constructing a kinetic model is which interactions

to include and in how much detail. This section discusses a base model which will

be developed and later modified to investigate the MLM system. Only a few Bcl-2

family members are present so we only need consider a handful of interactions.

3.2.1 Bak activation

In the MLM system, there are two suggested mechanisms by which Bak can be

activated to induce MOMP following BH3-only stimulus. The ‘direct’ activation

model proposes that spiked-in tBid or tBIM interact with Bak directly, possibly via

a ‘hit-and-run’ mechanism:

Act + Bak
k1a→ Act + Bak* . (3.2.1)

Throughout this thesis Act denotes the activator protein, either tBid or tBIM, and

Bak* is used to denote Bak in an active conformation. The interaction is in essence a

catalysing reaction and may be more accurately represented by a Michaelis-Menton

enzymatic model.2 Indeed, some kinetic models do explicitly use the Michaelis-

Menton model for similar ‘enzymatic’ reactions (e.g. [63]). Given the known dif-

ficulty in observing a transient tBid : Bak complex, however, this level of detail is

unnecessary.

2The Michaelis-Menton model ([62]) describes catalytic reactions in which a substrate, S, binds
temporarily to an enzyme, E, thereby catalysing the formation of product, P . That is, it models
the following reactions:

E + S
k1a

�
k1d

E : S
k2a→ E + P
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Direct vs indirect activation

The ‘indirect’ activation model supposes that Bak does not interact with Act. How-

ever, since MOMP does not occur ‘by default’, it can be inferred that most endoge-

nous Bak must be inactive. Therefore, the activation step must occur when small

amounts of active Bak bound to endogenous Bcl-xL are disrupted by BH3-only stim-

ulation. The unbound active Bak is then able to activate the remaining endogenous

Bak via auto-activation. This step requires the following interactions:

Bak* + Bcl-xL

k8a

�
k8d

Bak* : Bcl-xL, (3.2.2)

Act + Bcl-xL

k9a

�
k9d

Act : Bcl-xL .

The indirect activation model therefore requires some endogenous Bak to be active

and bound to Bcl-xL, which has not been established experimentally in the MLM

system. In fact there is some evidence that Bak is not prebound to Bcl-xL in the

MLM system3 but due to its role in an indirect activation mechanism we include

these interactions regardless.

The phrase ‘direct model’ has the particular meaning that BH3-only proteins

can interact with Bak to induce a conformation change, while the ‘indirect model’

means simply that BH3-only proteins cannot interact with Bak. This differs to the

typical definition of direct and indirect activation provided in Chapter 1, page 7.

As outlined in Section 1.4, an aim of this project is to determine which activa-

tion hypothesis plays a more significant role in experiments of the MLM system. In

practice, a model including both the ‘direct’ and ‘indirect’ mechanisms is developed.

Each mechanism is tested by setting the necessary kinetic parameters to zero: the

direct activation model does not use endogenous Bak complexed to Bcl-xL so inter-

actions (3.2.2) are not included. Similarly, the indirect activation model does not

include the (3.2.1) interaction.

3Dr. Ruth Kluck, WEHI, personal communication.

42



3.2.2 Bak homo-dimerisation and auto-activation

Bak homo-dimerisation is assumed to occur via the bimolecular interaction:

Bak* + Bak*
k4a

�
k4d

Bak2,

and Bak is assumed to be able to activate itself via the interaction:

Bak* + Bak
k5a→ 2 Bak* .

Though there is also evidence that spontaneous activation can occur in some cir-

cumstances. It was decided that this process is unimportant on the timescale being

considered.

3.2.3 Bak multimerisation and pore formation

The presence of Bak homo-dimers on the mitochondrial membrane is assumed insuf-

ficient to induce MOMP. It is hypothesised that these dimers form a larger cluster

which is able to induce permeability of the membrane [64]. This is represented by

a ‘multimerisation’ step. Two Bak dimers (or four Bak molecules) affect the mito-

chondrial membrane allowing for the release of intra-membrane cytochrome c into

the cytosol [65]:

Bak2 + Bak2 � Bak4,

Bak4 + Cyt-cM → Bak4 + Cyt-cC .

This mechanism is similar to that used in [47, 58]. [49] provides an alternative

mechanism.

3.2.4 Reversibility

Some changes and interactions between Bcl-2 members are considered essentially

irreversible: Bak activation and homo-dimerisation, for instance. Whether the

Bak:Mcl-1 complex is a ‘dead-end’ complex which does not release Bak once it
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has formed is also a question of some interest – both for providing interpretations

to the present MLM experiments and more generally.

However, by making some processes reversible and some irreversible, the outcome

of our simulations becomes predetermined. For example, if Bak homo-dimerisation is

irreversible and Bak:Mcl-1 complex formation is reversible then Bak homo-dimerisation

and therefore cytochrome c release is inevitable, regardless of kinetic parameters.

For this reason a completely reversible model will be built. By making each re-

action reversible the system remains in ‘dynamic’ equilibrium, rather than static

equilibrium, so that complexes are constantly forming and unforming.

3.2.5 Model equations

The complete set of equations describing interactions in the MLM system is:

Act + Bak
k1a

�
k1d

Act + Bak*

Bak* + Mcl-1
k2a

�
k2d

Bak* : Mcl-1

Act + Mcl-1
k3a

�
k3d

Act : Mcl-1

2 Bak*
k4a

�
k4d

Bak2

Bak* + Bak
k5a→ 2 Bak* (3.2.3)

2 Bak2

k6a

�
k6d

Bak4

Cyt-cM + Bak4
k7a→ Cyt-cC + Bak4

Bak* + Bcl-xL

k8a

�
k8d

Bak* : Bcl-xL

Act + Bcl-xL

k9a

�
k9d

Act : Bcl-xL,

and is represented in Figure 3.1. Let x = (B,A,M,C,X, B̂, B̂2, B̂4, ÂM , ÂX , M̂ , Ĉ, X̂)

be the state vector. The variables are: B = Bak, A = Act, M = Mcl-1, C =

Cyt-cM, X = Bcl-xL, B̂ = Bak∗, B̂2 = Bak2, B̂4 = Bak4, ÂM = Act : Mcl-1, ÂX =
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Act : Bcl-xL, M̂ = Mcl-1 : Bak∗, Ĉ = Cyt-cC and X̂ = Bcl-xL : Bak*. The entire

kinetic model is described by:

dx

dt
= Sbcl2Jbcl2 + f(t), (3.2.4)

where Sbcl2 and Jbcl2 represent the stoichiometric and reaction-rate vectors respec-

tively and f(t) is an inhomogeneous term used to model BH3 only stimulus (f(t) =

(0, f(t), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)). From the set of interactions given by (3.2.3) the

stoichiometric matrix can be derived:

Sbcl2 =



−1 0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 0 0 −1

0 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 −1

1 −1 0 −2 1 0 0 −1 0

0 0 0 1 0 −2 0 0 0

0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0



. (3.2.5)
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By applying the law of mass action, the reaction-rate vector is given by:

Jbcl2 =



k1aBA− k1dB̂

k2aMB̂ − k2dM̂

k3aAM − k3dÂM

k4aB̂
2 − k4dB̂2

k5aB̂B

k6aB̂2
2
− k6dB̂4

k7aB̂4C

k8aXB̂ − k8dX̂

k9aAX − k9dAX


. (3.2.6)

The initial conditions are

B(0) = B0, A(0) = A0, M(0) = M0, X̂(0) = X0, (3.2.7)

B̂(0) = ÂM(0) = M̂(0) = X(0) = ÂX = 0,

C(0) = Ĉ(0) = B̂2(0) = B̂4(0) = 0.

Equations 3.2.4-3.2.7 fully specify the model.

Recall the conservation matrix, (2.2.8), defines which species’ concentrations

are conserved and that rank(G) = n − rank(S). In the present case, n = 13 and

rank(S) = 8 therefore 5 concentrations can be eliminated from the system. At any

time t the following relations apply:

A0 +

∫ t

0

f(t′) dt′ = A+ ÂM + ÂX , (3.2.8)

C0 = C + Ĉ,

M0 = M + M̂ + ÂM ,

B0 = B + B̂ + 2B̂2 + 4B̂4 + M̂ + X̂,

X0 = X + X̂ + ÂX .

These can be verified by showing gTS = 0T for each relation. They correspond to

the conservation of activator, cytochrome c, Mcl-1, Bak and Bcl-xL in the system,
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Figure 3.1: Schematic of Bcl-2 family interactions. Bak* indicates the ‘active’ con-
formation of Bak. Act is used to indicated either tBid or tBIM. The arrows represent
the forward direction of each reaction and do not indicate (ir)reversibility. The cor-
responding model equations assume that all interactions occur within a well-mixed
solution. Arrowheads indicate product of reaction, species connected with an empty
dot play a catalysing role, while species connected with filled dots indicate complex
formation.

respectively.

The initial conditions are assumed to be known and the kinetic parameters will

be estimated both from Biacore binding data and by fitting to MLM experiments.

3.3 Physical considerations

Determining how Biacore binding data can be incorporated into the mass-action

kinetic models requires some consideration of the physical aspects of the MLM

experimental system. These considerations suggest a framework to include Biacore

binding data into a model of MLM experiments.

3.3.1 Previous work

Before considering the MLM system we describe the following three examples incor-

porating experimental binding data (SPR), or similar, into kinetic models.

The extrinsic cell death pathway model of [58] is trained on experimental data

based on live-cell imaging, flow cytometry and immunoblotting of cells perturbed by

protein depletion and overexpression. Where available, experimental values for ini-
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tial concentrations and kinetic parameters are used. Kinetic parameters come from

a variety of sources, including SPR experiments. Rates of interactions occurring on

the mitochondrial membrane are scaled by the ratio of cell volume to mitochondria

volume – to reflect to increased chance of molecular collisions occurring on the mem-

brane. Unknown rates are set at an intermediate value within a biologically realistic

range and are fit to experiments (ka = 105 M−1s−1 and kd = 10−3 s−1).

[63] develops a deterministic model of the eukaryotic mitogen-activated pro-

tein kinase signalling pathway. The model uses diffusion-limited kinetic models

for ligand-receptor interactions occurring on the membrane and for interactions oc-

curring between membrane-associated and cytosolic associated species. Units for

rate constants of these intra-membrane interactions were scaled appropriately [66].

A relatively simple kinetic model is implemented in [67] to investigate the role

rebinding plays in T-cell responses to antigen.4 An explicit mechanism for diffusion

is included to investigate the effect of rebinding in the efficient recognition of anti-

genic molecules. By allowing for brief unbinding, the T cell receptors are able to

discriminate antigens based on both their association and dissociation rates. SPR

measurements are utilised in the model. The units of the SPR measurements are

adjusted from the three-dimensional M−1s−1 to the two-dimensional m2s−1 by divid-

ing by a confinement length factor – the membrane thickness – here 0.262nm. The

resulting rates are compatible with experimentally determined membrane associated

rates. However the authors state the accuracy of this method is unknown.

3.3.2 MLM geometry

Bak and Bcl-xL are membrane associated proteins and any interaction they have

with themselves or other proteins occurs on the mitochondrial membrane. This

consideration can affect the form of the mass-action equations described in Section

2.2.1. Though primarily concerned with ligand-receptor complex association, [66]

addresses this issue. This section follows their derivations, where appropriate.

Section 2.2.1 describes protein complex formation as a one-step, reversible pro-

4T cells are part of the cell-mediated immune response, they recognise antigens presented by
the major histocompatibility complexes of host cells and are able to kill or co-ordinate the killing
of the responsible pathogen.
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cess in which two proteins, A and B form a complex, C:

A+B
ka
�
kd

C, (3.3.1)

where ka and kd are the effective association and dissociation rates, respectively. A

more realistic model is the two-step binding model in which proteins A and B first

must ‘encounter’ one another – via molecular transport – before forming complex

C:

A+B
k+

�
k−

A..B
kon

�
koff

C, (3.3.2)

where A..B denotes the ‘encounter complex’, k+ represents the transport rate which

is influenced by diffusion and geometry, kon and koff represent the intrinsic associ-

ation and dissociation rates respectively. The rates kon and koff are determined via

kinetic experiments such as those a Biacore machine performs. Three possibilities

present themselves in the MLM system:

1. Both A and B are free in solution

2. A and C are membrane associated and B is free in solution

3. A, B and C are membrane associated.

When both A and B are free in solution we will assume that the interaction is

reaction-limited such that (3.3.1) is a sufficient representation of the interaction.

When A is membrane associated and B is free in solution, we will assume that

molecular transport of B may not be neglected such that (3.3.2) is a required rep-

resentation of the interaction. This requires an expression for the effective forward

and reversible reaction rates, ka and kd, in terms of k+ and kon and koff.

When both A and B are membrane associated, we will neglect surface diffusion

of proteins required to encounter each other such that, again, (3.3.1) is sufficient. In

a sense we are considering the interactions divided into two compartments, both of

which are sufficiently well-mixed that they can be modelled by simple mass-action

kinetics. Interactions occurring ‘on the boundary’ of the compartments need more

care.

Since Mcl-1 lacks a transmembrane domain we assume that it is predominantly

situated in solution; similarly with tBid and tBIM. Therefore, we suppose that
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Figure 3.2: Schematic of Bcl-2 family interactions. Some interactions occur on the
mitochondrial membrane, some occur in solution. The arrows represent the forward
direction of each reaction and do not indicate (ir)reversibility.

transport between ‘compartments’ is transient – only occurring when a solution and

membrane-associated protein complex – when they dissociate the proteins return

to their respective compartments. For this reason we do not develop an explicit

compartmental model as implemented in [58], although in future modelling efforts

this is definitely an addition to consider.

Figure 3.2 illustrates the compartmentalisation of the Bcl-2 family interactions.

3.3.3 On diffusion-limited processes

In order to incorporate transport effects which may affect solution proteins asso-

ciating with membrane associated protein, here we derive an effective forward and

reverse rate for reactions in which diffusion of protein to and from the membrane is

non-negligible. The derivation of kf is presented in detail with the derivation of kr

following a similar process.

To begin with, consider the rate at which the free protein B associates with the

mitochondrion surface as a whole. Later we divide the rates we obtain by the number

of A molecules present on the surface to obtain a per ‘receptor’ rate. Assuming

the concentration of B molecules is significantly higher than that of mitochondria
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in solution, we assert that around a single mitochondrion, M , the concentration of

B(r) as a function of distance from M is given by the steady-state diffusion equation

in radially symmetric spherical coordinates:

D
d

dr

(
r2dB

dr

)
= 0, (3.3.3)

for diffusivity, D in units cm2s−1. In this derivation it is most natural to use the

units cm−3 for B(r) and cm−2 for A and C. Molar and cm−3 can be interchanged

as follows:

1 cm−3 = 103N−1
A M, (3.3.4)

where NA is Avagadro’s constant and is NA ≈ 6.02× 1023.5

The concentration ‘very far’ from M is assumed to equal the bulk concentration,

B:

B(r)→ B, r →∞. (3.3.5)

The other boundary condition, at the encounter radius r = s (the radius of the

mitochondrion), in which the influx of B molecules is given by the intrinsic ‘mito-

chondria’ on-rate multiplied by the local concentration B(s) and, at steady-state,

also by the diffusion rate multiplied by the ‘encounter’ surface area. Therefore, the

second boundary condition is:

4πs2D
dB

dr

∣∣∣∣
r=s

= (kon)MTB(s). (3.3.6)

Let (kon)MT denote the intrinsic mitochondria on-rate and let (kf )MT denote the

effective forward rate of protein B binding with mitochondria surface. These are

related to kon and kf , our known and target quantities respectively, by:

(kon)MT = [A]kon, (kf )MT = [A]kf ,

where [A] denotes the number of free A molecules per mitochondrion. The solution

51 cm−3 = 1
(

#
cm3

)
= 103

(
#
L

)
= 103

NA

(
moles

L

)
= 103N−1A M
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of (3.3.3) with boundary conditions (3.3.5) and (3.3.6) is:

B(r) =
−(kon)MT sB

4πDs+ (kon)MT

1

r
+B0.

Recalling that our overall flux of molecules associating with M is given by (kf )MTB

and is equal to:

(kf )MTB = 4πs2D
dB

dr

∣∣∣∣
r=s

,

we obtain:

(kf )MT = B−14πs2D
db

dr

∣∣∣∣
r=s

= (kon)MTB(s)B−1,

and thus:

(kf )MT =
4πsD(kon)MT

4πsD + (kon)MT

=

(
1

4πsD
+

1

(kon)MT

)−1

. (3.3.7)

When the quantity 4πsD is much smaller than (kon)MT , the binding is termed

diffusion-limited. When (kon)MT is much smaller than 4πsD, the binding is termed

reaction-limited. We identify 4πsD with the transport rate mentioned above k+. In

terms of kon:

kf =
4πsDkon

4πsD + [A]kon

,

and since [A] = 4πs2A, then:

kf =
Dkon

D + sAkon

. (3.3.8)

The effective forward association rate is no longer a constant. Interestingly, it be-

comes less efficient the higher the concentration of free A molecules. This is a result

of increased competition between A molecules for unbound B.
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The dissociation rate is derived using a similar approach and is given by:

(kr)MT =
4πsD(koff)MT

4πsD + (kon)MT

,

and therefore:

kr =
Dkoff

D + sAkon

. (3.3.9)

As with kf , the effective dissociation rate becomes less efficient the higher the con-

centration of free A molecules, since rebinding is more likely to occur. Equations

(3.3.8) and (3.3.9) account for the effect of diffusion on both the association and dis-

sociation rates mentioned in Section 2.2.1. Evaluation of kf and kr requires knowing

A in units of cm−2 and kon in units of cm3s−1. Let Ā be the level of protein A in

nanomolar and k̄on and k̄off be kon and koff in units of nM−1s−1, respectively. Using

(3.3.4) gives:

kon =
1012k̄on

NA

. (3.3.10)

The number of A molecules per millilitre is given by N = 10−12ĀNA. The number

of mitochondria per millilitre is NMT = ρMT/mMT , where ρMT (g/ml) is density of

mitochondria in solution and mMT (g) is the mass of one mitochondrion. Therefore

the number of A molecules per mitochondria is:

NA/MT =
N

NMT

=
ĀNAmMT

1012ρMT

,

and the density per square centimetre is:

A =
NA/MT

4πa2
=

ĀNAmMT

4πa21012ρMT

, (3.3.11)

for mitochondria radius a (cm). Using the following estimates:

a = 10−4 (cm), mMT = 10−12 (g), ρMT = 10−3 (g/ml),

and using (3.3.11) and (3.3.10) we obtain:

kf =
106Dk̄on

106D + Āk̄on

, kr =
106Dk̄off

106D + Āk̄on

(3.3.12)
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where we have left D as a parameter to be determined, since its magnitude is

unknown in the MLM experiments. The system of ODEs is:

dC̄

dt
=

106DkonĀB̄

106D + Ākon

− 106DkoffC̄

106D + Ākon

,
dĀ

dt
= −dC̄

dt
,

dB̄

dt
= −dC̄

dt

The modification to the kinetic rates, (3.3.12), are used later in the context of

Bcl-2 family interactions in the MLM experimental system.

3.4 Conclusion

This chapter considered both biological and physical issues related to modelling the

mitochondrial apoptotic pathway. Previous models were discussed and each Bcl-2

interaction occurring in the MLM system was analysed. The mass-action system was

specified. Considerations involving mass-transport were discussed and a correction

for diffusion-limited reactions was outlined.
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Chapter 4

Model calibration

Having outlined the model, this chapter matches the model to timing experiments

performed in the MLM system. These experiments are used to determine unknown

kinetic parameters which best reproduce the experiment outcomes. Once these have

been estimated we can determine the relative importance of the direct and indirect

models in modelling the system.

4.1 An experiment to observe Bak:Mcl-1 disrup-

tion

The following MLM experiments provide data to calibrate our models.

Over an hour, increasing concentrations of tBid or tBIM are added to MLM at 10

minute intervals, along with an initial concentration of 20nM Mcl-1. Approximately

10nM of endogenous Bak is present and initially in the non-activated conformation.

Samples are taken every 10 minutes. The increasing tBid or tBIM is used to mimic

increasing cellular stresses – the total amount of BH3-only grows exponentially with

time so as to force a response from the system at some point. Both tBid and tBIM

activate Bak, which then binds to Mcl-1 to form the Bak*:Mcl-1 complex. The

aim of the experiment is to determine which of tBid and tBIM can then disrupt

the Bak:Mcl-1 complex to induce apoptosis. Figure 4.1 illustrates a clear Bak:Mcl-

1 complex is observed with tBid signalling and a transient Bak:Mcl-1 complex is

observed with tBIM signalling. This suggests that tBIM is able to disrupt the
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Figure 4.1: Western blots of experiment demonstrating Bak:Mcl-1 complex disrup-
tion with tBIM signalling and not with tBid signalling. Initially 20 nM of Mcl-1 and
(a) 0.3 nM of tBid or (b) 3nM of tBIM are spiked into the system. Subsequent ad-
ditions of tBid/tBIM are made every 10 minutes with the quantity of each addition
indicated in the top two rows. Cyt c super represents cytochrome c detected in the
supernatant – released from mitochondria. Cyt c mito represents cytochrome c in
mitochondria. The bottom band in the tBid:Mcl-1 frame indicates the tBid:Mcl-1
complex. Data provided by Dr Ruth Kluck, WEHI, unpublished.

56



Bak:Mcl-1 complex which forms, but that tBid is not able to. This is consistent

with the Biacore binding data present in Table 4.3 which indicates that tBIM binds

more strongly to Mcl-1 than Bak does, and that tBid binding to Mcl-1 is weaker

than that of Bak.

4.1.1 Quantifying experimental data

The western blots are quantified using a densitometer. At the time of writing calibra-

tion data was not available. To convert the densitometry measurements to protein

concentrations the following assumptions were therefore necessary:

• In the tBid signalling case: almost all Bak becomes activated and binds to

Mcl-1 at the observed peak in signal at t = 30 minutes.

• Almost all Mcl-1 is bound to either Bak or tBIM/tBid at t = 180 min.

• The MLM system contains 5nM of cytochrome c. Since cytochrome does

not interact with any Bcl-2 members the actual level of protein is of little

importance.

Under these assumptions, the proteins level at each sample time point in the exper-

iment can be scaled accordingly from the densitometry data (Figure 4.2).

Prior experimental knowledge1 of the MLM system also provides the following

‘qualitative’ behaviours we wish to reproduce in any model based on these experi-

ments:

• Low concentrations of monomeric activated Bak at any time point. Bak is ex-

pected to dimerise quickly which means that Bak monomers do not accumulate

on the mitochondrial membrane.

• Eventual cytochrome c release with tBIM stimulation but only minimal cy-

tochrome c release with tBid stimulation.

• Low concentrations of Bak homo-dimer. The formation of such dimers is

thought to result almost immediately in cytochrome c release such that the

1Dr. Ruth Kluck, WEHI, personal communication
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Figure 4.2: Scaled densitometry data under a set of assumptions regarding behaviour
in the MLM system. Cyt c S/N represents cytochrome c detected in the supernatant
– released from mitochondria. Cyt c mito represents cytochrome c in mitochondria.

observation of cytochrome c is synonymous with Bak dimer formation. Little

to no cytochrome c release therefore corresponds to little or no Bak homo-

dimers.

• In indirect model simulations some of the endogenous Bak is assumed to be

in an active conformation and prebound to Bcl-xL (present at 3nM).

By adding these ‘observations’ as a set of densitometry points these considerations

can be included in a non-linear least squares estimation procedure. These ‘concen-

trations’ are listed in Table 4.1.

The lack of available quantitative data makes these assumptions necessary in

order to develop a realistic model which is in accord with known behaviour in the

MLM system.

Protein tBIM tBid

Bak* 2 0.5
Bak2 2 0.5
Bak4 2 0.5

Table 4.1: Expected behaviours of unobserved proteins are incorporated into the
model by including approximate protein concentrations (nM) in the parameter es-
timation procedure.
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4.1.2 BH3-only stimulus

The experiment includes injections of BH3-only protein every ten minutes. In this

case the inhomogeneous term of (3.2.4) takes the form: f(t) = (0, f(t), 0, 0, 0, 0, 0, 0, 0).

Different availability of BH3-only stock protein meant the amount spiked in was dif-

ferent for tBid and tBIM stimulation. With tBIM stimulation the following piece-

wise constant function is adopted:

ftBIM(t) =



7
w
, 600− w ≤ t < 600 ,

20
w
, 1200− w ≤ t < 1200 ,

70
w
, 1800− w ≤ t < 1800 ,

200
w
, 2400− w ≤ t < 2400 ,

0, otherwise

, (4.1.1)

meaning the total concentration of Act spiked into the system is given by:

F (t) = A0 +

∫ t

0

f(t′) dt′

The parameter w reflects the window of time (in seconds) over which the tBid is

spiked into the system every ten minutes. We adopt a relatively large w = 60s

window. F (t) listed here matches the timing and concentrations of the experiment

for tBIM additions (Figure 4.3). In the tBid case, the function f(t) is described in

(4.1.2).

ftBid(t) =



.7
w
, 600− w ≤ t < 600 ,

2
w
, 1200− w ≤ t < 1200 ,

7
w
, 1800− w ≤ t < 1800 ,

20
w
, 2400− w ≤ t < 2400 ,

70
w
, 3000− w ≤ t < 3000 ,

200
w
, 3600− w ≤ t < 3600 ,

0, otherwise

, (4.1.2)
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Figure 4.3: Function f(t) represents rate of tBIM addition into experiment. Func-
tion F (t) represents total amount of tBIM spiked into system in experiment.

4.2 Parameter Estimation from Experiment

Kinetic data on some of the protein-protein interactions occurring in our model is

available, but not for every interaction. The above described experiments and den-

sitometry data will be used to estimate these kinetic rates for later model analysis.

Here we discuss how to estimate these kinetic parameters.

4.2.1 Non-linear least squares estimation

Non-linear least squares provides a method for determining parameters which best

fit experimental data. The next two sections describe the theory needed for this

estimation. Using more general notation adapted from [68], we are analysing systems

of the form:
dx

dt
= f(t,x, θ),

in which x(t, θ) ∈ Rn denotes the n-dimensional state variable, f(t,x, θ) ∈ Rn

denotes a Lipschitz continuous rate function, and θ ∈ Rp denotes a p-dimensional

vector of unknown parameters. At some time, t0, the system is subject to a set of q

constraints, c ∈ Rq, such as initial conditions:

c(x(t0, θ), θ) = 0.
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To estimate the parameter vector, θ, a number of observations of the state vari-

ables at N time points are available. The measurements, yi ∈ Rn, are written:

yi = x(ti, θ) + εi, i = 1, . . . , N,

with errors εi ∈ Rn. The task is to find parameters, θ∗, such that the differences,

yi−x(ti, θ
∗), are minimised in some way. The method of least-squares provides the

objective function:

θ∗ = argmax
θ∈Rp

N∑
i=1

[yi − x(ti, θ)]
T [yi − x(ti, θ)], (4.2.1)

such that x satisfies the initial value problem:

dx

dt
= f(t,x, θ),

c(x(t0, θ), θ) = 0.

In the context of a linear least-squares fit, the coefficient of determination,

R2 ∈ [0, 1], provides a measure of the goodness of fit. It can be interpreted as

the proportion of observed variance which can be explained, or accounted for, by

the model. Let ȳ = 1
N

∑N
i=1 yi represent the average observation vector. Then we

define the following sum of squares:

SSerr =
N∑
i=1

[yi − x(ti, θ)]
T [yi − x(ti, θ)],

SStot =
N∑
i=1

[yi − ȳ]T [yi − ȳ],

and compute R2 as:

R2 = 1− SSerr
SStot

. (4.2.2)

In a non-linear least squares fit R2 ≤ 1 and no longer has a convenient interpretation.

It can still be calculated using (4.2.2). In both cases R2 = 1 indicates a perfect fit

and R2 = 0 indicates a fit as good as would be achieved by fitting with constant
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functions.

4.2.2 Optimisation

Equation (4.2.1) is a non-linear least squares problem and in general cannot be

solved analytically. The problem may contain more than one local minima meaning

the ‘optimal’ parameter, θ∗, can depend on initial estimates, θ0, and there is no

guarantee that a global minimum will be found. A number of methods exist for

finding a solution to (4.2.1) [69]. The problem can be seen as a generic optimisation

problem for which a wide range of techniques exist.

The Trust-Region algorithm [70] is one such generic optimisation algorithm. The

general goal is to find parameters, θ∗, which minimise an objective function, f(θ),

such as (4.2.1). Beginning at an initial estimate, θ0, we wish to move to a new

point, θ1, for which f(θ1) < f(θ0). The standard approach involves approximating

the objective function by a quadratic function, q(θ), which is computed from the

first two terms of a Taylor series expansion about the point θ0. The region, N ,

in which q(θ) is presumed to be a good approximation of f(θ) is named the trust-

region. Within N the approximate objective function can be minimised to produce

a trial-step, θs. If indeed f(θs) < f(θ0) then θ1 = θs and the process is repeated. If

however f(θs) > f(θ0) the trust-region is reduced and a new trial-step is attempted.

Some optimisation methods are able to take advantage of the structure of the

least-squares objective function, for example, the Gauss-Newton method or the

Levenberg-Marquart method [71, 72]. Beyond these so-called initial value prob-

lem methods, other methods specific to optimising the fit of ODE models exist,

such as, the multiple shooting method or the embedding method [73, 74].

The numerical computing package MATLAB R©2 implements both the Trust-

Region-Reflective [75] and the Levenberg-Marquart method specifically for solving

non-linear least squares problems. Although in theory the values of binding con-

stants are unbounded, in practice definite, physically realistic limits can be set [66].

For this reason the Trust-Region-Reflective algorithm, which is better suited to

constrained optimisation problems, will be used to estimate unknown parameters.

Further, since the magnitudes of the parameters which need to be determined is

2MATLAB version 7.10.0 (R2010a). Natick, Massachusetts: The Mathworks, Inc., 2010.
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unknown, the binding parameters will be fitted as exponents of 10. For parameters,

θ, the mass-action equations take the form:

Ji(x, θ) = 10θi,ax1x2 − 10θi,dx3.

To increase confidence in our estimates, θ∗, the optimisation procedure is per-

formed using a range of initial estimates. Beyond one common, intermediate initial

guess, all other initial kinetic rate exponents are chosen randomly, uniformly between

-1 and -6. It should also be noted that each iteration of the Trust-Region-Reflective

algorithm requires evaluating the objective function which in turn requires solving

the initial value problem to obtain trajectories x(t, θ). Each step is therefore com-

putationally very expensive and our exhaustive parameter search becomes infeasible

for any more than 8 or 9 free parameters.

4.2.3 Simulations

The model equations described in Section 3.2.5 are solved numerically using MAT-

LAB to obtain trajectories for the concentration of each species. Chemical reactions

systems have a tendency to be ‘stiff’ in which case the choice of numerical solver can

be important. MATLAB’s stiff solver ode15s [76] is used on the basis of its solid

performance on a stiff and non-stiff test problem (Table 4.2). The solver ode15s is

a variable order, multi-step solver and is used in [58] and [77] for similar systems.

Solver ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

Typical 2.54 1.57 2.06 1.34 2.69 0.87 1.11
Extreme 17.36 11.23 16.18 0.82 2.44 0.71 0.89

Table 4.2: Time (s) for different MATLAB ODE solvers to solve two test prob-
lems based on the model equations of Section 3.2.5. Test problems are based on
the simplified Bcl-2 model presented in 5.2. All kinetic parameters in the ‘typical’
problem are set to intermediate values – 10−4. Three kinetic parameters in the ‘ex-
treme’ problem are set at unrealistic, rapid values – 10−1. In all cases the solution
was inspected graphically to ensure convergence to the known solution. The MAT-
LAB ODE suite provides three non-stiff solvers (without suffix) and four stiff solvers
(with suffix). The difference between these classes becomes clear in the ‘extreme’
test problem.
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4.3 Binding data

The Biacore binding data available for Mcl-1 and Bcl-xL is contained in Table 4.3.3

The experimental procedure is as follows: direct binding assays were performed at

room temperature using a Biacore S51 biosensor with 10 mM NaH2PO4, 40 mM

Na2HPO4, 150 mM NaCl, 1 mM EDTA, 0.03% (v/v) Tween-20, 5% (v/v) DMSO,

pH 7.4 as the running buffer. Anti-GST was immobilized on a CM5 sensorchip using

aminecoupling chemistry. Recombinant GST-tagged Bcl-xL or Mcl-1 (100 mg/ml)

were then injected at the flow rate of 10 ml/min and captured via the tag. All

BH3 domain peptides were prepared in running buffer. Several concentrations of

peptide around that peptide’s KD were injected at a flow rate of 90 ml/min. Weaker-

binding ligands (KD > 10 nM) were allowed to associate with the protein for 60s and

dissociation was monitored for 60s, whilst for tighter ligands the association time

was 90s and the dissociation time 270s. All sensorgrams were generated using double

referencing by subtracting the binding response from a reference spot, followed by

corrections for solvent bulk shifts and subtraction of an average of the running buffer

bank injections over the immobilized spot.

The proteins tested are similar to those used in MLM experiments, although

the Bim and Bak and Bid reagents are BH3 peptides (around 20 residues) rather

than full-length proteins (around 150-200 residues). Importantly, many studies from

over 10 years of work indicate that these numbers provide an approximation to the

relevant binding affinities used in our experiments.

Complex KD (nM) kd (1/s) ka (1/nM/s)
Mcl-1:Bim 0.093 2.96× 10−4 3.20× 10−3

Mcl-1:Bak 0.58 7.98× 10−4 1.37× 10−3

Mcl-1:Bid 9.3 7.52× 10−2 8.10× 10−3

Bcl-xL:Bim 0.149 4.76× 10−4 3.86× 10−3

Bcl-xL:Bak 3.7 1.02× 10−2 2.77× 10−3

Bcl-xL:Bid 2.53 3.92× 10−3 1.55× 10−3

Table 4.3: Kinetic rate constants of Bcl-2 family protein interactions obtained using
a Biacore machine.

3Experiments and data collection were performed by Dr. Douglas Fairlie and Dr. Erinna Lee,
WEHI
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4.4 Model selection

The applicability of available Biacore binding data and assumptions of mass-transport

in the MLM system are not known. The direct and indirect models are therefore

compared to experimental data under a number assumptions regarding the use of

Biacore data and mass-transport. On the basis of these comparisons a method for

incorporating Biacore binding data and MLM experiment data is determined.

4.4.1 Naive use of binding data

We first assume the data in Table 4.3 is applicable in the MLM system without

adjustment. By using all measured data a non-linear least squares fit is required

to determine the parameters k1a,tbim, k1a,tbid, k4a, k4d, k5a, k6a and k6d in the direct

model and k4a, k4d, k5a, k6a and k6d in the indirect model. Conforming with prior

experimental knowledge, the Bak deactivation rate, k1d, is assumed to be very slow,

k1d = 10−6, and is not a fitted parameter. Every unknown parameter is chosen

randomly to obey a log-uniform distribution between 10−6 and 10−1.

Figure 4.4 and Figure 4.5 show a simulation of the MLM experiment with tBIM

and tBid stimulation, respectively, using these fitted parameters and the direct

activation model. The non-linear coefficient of determination is R2 = 0.11. This

figure is provided for later comparison and is, on its own, difficult to interpret.

Inspection of the simulations, however, shows the model is not accurate. The most

obvious problem being the early formation of tBid:Mcl-1 complex, compared with

experiment.

Estimating parameters of the indirect model provides a significantly worse fit

to the experimental data (R2 = −0.09, simulations not shown). The problem lies

in the Biacore-measured instability of the Bcl-xL:Bak* complex. The comparatively

high dissociation rates used here, without adjustment, result in Bak* dissociating

without any addition of BH3-only protein. The subsequent auto-activation of Bak

results in cytochrome c release ‘by default’ – without the addition of any BH3-only

protein. This is a significant problem with the indirect model implemented in this

fashion and needs to be remedied if the direct and indirect models are to be fairly

compared.
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Direct activation model, tBIM stimulation, naive use of binding data
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Figure 4.4: Direct activation of Bak via tBIM stimulation. Dynamic simulation
of BH3-only spike-in experiment using available Biacore-measured parameters. The
remaining unknown parameters are fitted using non-linear least squares (R2 = 0.11).
Scale in (c) has been truncated to focus on tBIM:Mcl-1 complex. The curves repre-
sent model simulations, the points represent available MLM data points.
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Direct activation model, tBid stimulation, naive use of binding data
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Figure 4.5: Direct activation of Bak via tBid stimulation. Dynamic simulation
of BH3-only spike-in experiment using available Biacore-measured parameters. The
remaining unknown parameters are fitted using non-linear least squares (R2 = 0.11).
Scale in (c) has been truncated to focus on tBid:Mcl-1 complex. The curves represent
model simulations, the points represent available MLM data points.
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4.4.2 Scaled use of binding data

A naive use of Biacore-measured kinetic rates may be inappropriate because the

proteins measured are not the exact proteins used in the experiments and most of

the interactions occur on or near the membrane which may affect the kinetics. To

account for these factors we scale the measured association and dissociation rates by

a common factor. In addition to the parameters estimated in Section 4.4.1, a forward

scale factor, Df , and reverse scale factor, Dr, are estimated such that, for measured

rates: vi = 10Dfv+
i − 10Drv−i , for each reaction with measured data (i ∈ {2, 3, 8, 9}).

The initial parameter estimates for Df and Dr are set at 0 and are allowed to vary

over 6 orders of magnitude: Df , Dr ∈ [−3, 3]. Again, the Bak deactivation rate is

fixed at k1d = 10−6 and unknown initial estimates are set at 10−4.

The direct activation model is fitted to the MLM experiment data (R2 = 0.16).

Thus, scaling the Biacore-measured kinetic rates slightly improves the fit of the

model to the data. The measured forward rates are multiplied by a factor of 10−0.17

and the reverse rates by 101.1. Given the above-mentioned problem of early tBid:Mcl-

1 complex formation it is not surprising a better fit is obtained by a reduction in the

forward reaction rate and an increase in the reverse reaction rates. Figure 4.6 and

Figure 4.7 illustrate the simulated experiment using these fitted kinetic parameters

and the direct activation model. The formation of the tBid:Mcl-1 complex has

indeed been delayed. However, under tBIM stimulation the transient Bak:Mcl-1

complex appears to dissociate too quickly and under tBid stimulation the transient

Bak:Mcl-1 complex peaks at approximately t = 30mins, which does not match the

data.

The indirect activation model is fitted to the MLM experiment data (R2 = 0.16,

simulation not shown). By scaling the forward rates by 10−1.3 and the reverse rates

by 10−0.57 a significant improvement in the quality of the fit to data is obtained,

compared with the initial, ‘naive’ attempt. The levels of the Bak:Mcl-1 complex are

too low and the Bak homo-dimerisation takes place too early and cytochrome c is

released before observed. The Bak* : Bcl-xL complex steadily dissociates throughout

the experiment, and this appears to contribute to the early formation of Bak homo-

dimers.

The heuristic introduction of these scale factors lacks any solid theoretical moti-
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vation and inspection of Figure 4.6 and Figure 4.7 does not demonstrate a convincing

reproduction of what is observed in vitro – even if the imprecision of the quantifi-

cation process is considered.

4.4.3 Relative use of binding data

The most sparse way to make use of the available binding data is to assume that only

the relative rates for the association and dissociation of tBid:Mcl-1 and tBIM:Mcl-

1 and tBid:Bcl-xL and tBIM:Bcl-xL have meaning. We also assume that on- and

off-rates for Bak:Mcl-1 and tBid:Mcl-1 cannot be compared, for example, because

one interaction is membrane associated while the other is not. Therefore, all kinetic

parameters are estimated except for k3a,tbid, k3d,tbid, k9a,tbid and k9d,tbid, whose values

are determined by their measured ratio to k3a,tbim, etc. Again, the Bak deactivation

rate is fixed at k1d = 10−6 and unknown initial estimates are set at 10−4.

The direct activation model is fitted to the MLM experiment data (R2 = 0.54).

Figure 4.8 and Figure 4.9 illustrate the simulated experiment using these fitted

kinetic parameters and the direct activation model. Comparison of these figures

to those in Section 4.4.2 shows an obvious improvement in fit for both tBid and

tBIM stimulation. With tBIM stimulation there is significant cytochrome c release,

whilst with tBid stimulation its release is less significant, though, still predicted

to occur. This is a result of cytochrome c release being modelled as irreversible.

Though this is a reasonable assumption to make, the inevitability of MOMP and

cytochrome c release is a flaw in the current model and suggests a more detailed

(perhaps stochastic) implementation of membrane pore formation may be required.

The indirect activation model is fitted to the MLM experiment data (R2 = 0.45).

Figure 4.10 and Figure 4.11 illustrate the simulated experiment using these fitted

kinetic parameters and the indirect activation model. Even with the extra degrees of

freedom the indirect model struggles to mimic experimentally observed behaviour.

The failure to mimic the observed timing of the Bak:Mcl-1 complex under both tBIM

and tBid stimulation reflects the difficulty the indirect model has in finding a balance

between Bak auto-activation following BH3-only stimulation and Bak sequestration

by Bcl-xL, preventing MOMP occurring by default. This suggests the indirect model

is in some way less ‘stable’ or ‘robust’ to changes in the relevant kinetic parameters.
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Direct activation model, tBIM stimulation, scaled use of binding data
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Figure 4.6: Direct activation of Bak via tBIM stimulation. Simulation of BH3-
only spike-in experiment using scaled Biacore-measured parameters. The remaining
unknown parameters are fitted using non-linear least squares (R2 = 0.15). Scale
in (c) has been truncated to focus on tBIM:Mcl-1 complex. The curves represent
model simulations, the points represent available MLM data points.
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Direct activation model, tBid stimulation, scaled use of binding data
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Figure 4.7: Direct activation of Bak via tBid stimulation. Simulation of BH3-
only spike-in experiment using scaled Biacore-measured parameters. The remaining
unknown parameters are fitted using non-linear least squares (R2 = 0.15). Scale in
(c) has been truncated to focus on tBid:Mcl-1 complex. The curves represent model
simulations, the points represent available MLM data points.
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Direct activation model, tBIM stimulation, relative use of binding data
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Figure 4.8: Direct activation of Bak. Dynamic simulation of BH3-only spike-in
experiment using available Biacore-measured parameters. The remaining unknown
parameters are fitted using non-linear least squares (R2 = 0.54). Scale in (c) has
been truncated to focus on tBIM:Mcl-1 complex. The curves represent model sim-
ulations, the points represent available MLM data points.
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Direct activation model, tBid stimulation, relative use of binding data
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Figure 4.9: Direct activation of Bak. Dynamic simulation of BH3-only spike-in
experiment using available Biacore-measured parameters. The remaining unknown
parameters are fitted using non-linear least squares (R2 = 0.54). Scale in (c) has
been truncated to focus on tBid:Mcl-1 complex. The curves represent model simu-
lations, the points represent available MLM data points.
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Indirect activation model, tBIM stimulation, relative use of binding data
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Figure 4.10: Indirect activation of Bak under tBIM stimulation. Simulation of BH3-
only spike-in experiment using available Biacore-measured parameters. The remain-
ing unknown parameters are fitted using non-linear least squares (R2 = 0.45). Scale
in (c) has been truncated to focus on tBIM:Mcl-1 complex. The curves represent
model simulations, the points represent available MLM data points.
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Indirect activation model, tBid stimulation, relative use of binding data
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Figure 4.11: Indirect activation of Bak under tBid stimulation. Simulation of BH3-
only spike-in experiment using available Biacore-measured parameters. The remain-
ing unknown parameters are fitted using non-linear least squares (R2 = 0.45). Scale
in (c) has been truncated to focus on tBid:Mcl-1 complex. The curves represent
model simulations, the points represent available MLM data points.
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4.4.4 Molecular transport

Finally, rather than an ad hoc adjustment of experimentally determined kinetic

rates, Section 3.3.3 derived an adjustment to the rate constants applicable when re-

actions involve solution- and membrane-associated proteins. The following reactions

rates are adjusted accordingly:

k′1a =
106Dk1a

106D + B̂k1a

, (4.4.1)

k′2a =
106Dk2a

106D + B̂k2a

, k′2d =
106Dk2d

106D + B̂k2a

,

k′9a =
106Dk9a

106D +Xk9a

, k′9d =
106Dk9d

106D +Xk9a

.

This allows the experimentally determined kinetic rates to be incorporated in a

fashion which accounts for mass-transport effects. The diffusion parameter, D, is

allowed to vary between D = 10−4 and D = 10−9, with an initial estimate of

D = 10−6, and is fitted with the above-described usages. Figure 4.12 demonstrates

the effect the diffusion rate has on a direct activation model.

Table 4.4 lists the goodness-of-fit for each of the above described methods of

integrating Biacore binding data with MLM experiment data on both a direct and

indirect activation model. The effect on the goodness-of-fit by including a diffusion

term is listed.

For each of the preceding corrections described in Section 4.4.1, Section 4.4.2

and Section 4.4.3, the modelling of diffusion effects does not significantly affect

the quality of the fit to experimental data. In the tBid signalling case, diffusion

slows the formation of the Bak:Mcl-1 complex, which in turn, increases the rate of

tBid:Mcl-1 complex formation. (Figure 4.12). Since qualitatively or quantitatively

the diffusion-limited models do not appear to provide any advantage in modelling

the Bcl-2 family interactions they are neglected from later analysis. The issues

in using Biacore-measured kinetic reaction rates do not appear to be a result of

mass-transport effects.
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Figure 4.12: Effect of diffusion-limited mass-transport on a direct activation model
using tBIM and tBid stimulation. Using fitted kinetic parameters listed in Table 4.6
and a range of diffusion constants. The curves represent simulated concentrations,
the points represent densitometry data. Curves in all plots (a)-(d) are identified
using the legend in plot (a).
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4.4.5 Discussion

Given the superior fit obtained by using the binding data in a relative fashion, all

later analysis of both the direct and indirect models will use this assumption and

the kinetic parameters listed in Table 4.6. Of course, it is not at all surprising that

a ‘better’ fit to data will be obtained as the number of parameters to be estimated

is increased. However, given the stated deficiencies in the models determined in

Section 4.4.1 and Section 4.4.2, a minimal use of measured binding data is necessary.

We are ensuring that our models are consistent with the binding data but are not

constrained by them.

This demonstrates the danger in utilising experimentally determined kinetic rates

without regard to their applicability to the present situation. It is not only the

absolute value of the measured rates that needed scaling, but their values relative to

each other. Thus, care is needed to make effective use of experimentally determined

kinetic reaction rates.

In addition to the methods employed above to utilise the kinetic binding data,

another approach would be to use the data simply for model validation. This would

involve performing the fitting proceedure completely unconstrained and then com-

paring the fitted parameters to the Biacore binding data. This has the benefit of

providing independent estimates of important binding parameters which, if consis-

tent with the Biacore data, would provide support that the binding data do indeed

represent binding on- and off-rates as they occur in vitro. Such an approach is worth

pursuing in future incarnations of this analysis. Further, the models built here are

ultimately based on a number of stated hypotheses about what interactions are rel-

evant to the MLM experiments. It is possible then that these models are missing

relevant interactions, in which case the structure or topology of the models built

would need to be changed.

Comparing the quality of fit for both the direct and indirect model to available

experimental data shows, regardless of the inclusion of diffusion effects or use of

kinetic binding data, that the direct model is more able to accurately model the

timing experiment in the MLM system. The R2 values reported are not adjusted

by the number of parameters fitted but inspection of Table 4.4 and Table 4.5 shows

that this is unlikely to affect our findings.
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Does this mean that the direct activation of Bak via BH3-only interaction is

necessary in order to model MLM experiments? A key difference between the direct

and indirect model simulations is the timing of formation of the Bak:Mcl-1 complex.

As stated in Section 4.4.3, the inclusion of a direct activating mechanism appears to

enable a more dynamic response to BH3-only stimulation thereby producing a model

more reflective of the MLM experimental data. The proceeding chapter explores this

comparison further.
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Some reaction rates estimated in Table 4.6 are unknown to experiment (though

see the recently published data in [18]). In particular the rate of Bak activation

through interaction with tBid or tBIM. The relative value of these rates compared

with Bak:Mcl-1 complex association and tBid/tBIM:Mcl-1 complex formation is of

biological interest. Successfully using the fitted values for these activation rates in

future experiments to predict the timing of cytochrome c release, etc, would provide a

validation of our model and information about the activity of the BH3-only proteins

being tested. This is addressed in Chapter 5. Outside of model validation, the

relative value of these kinetic rate parameters can be used to predict the outcome

of future MLM experiments using the same stock of protein.

The sparsity of experimental data makes these estimates difficult to assess. Only

one instance of the modelled experiment was performed with the same stock of

tBid and tBIM meaning that no information about the variability between repeat

MLM experiments was obtained. It is known that different stocks of BH3-only

have different efficacies in activating Bak and this will affect the outcome of the

experiments and the kinetic parameter estimates. In the future perhaps a procedure

to calibrate the model for different stocks of BH3-only can be developed but this

was not explored in the present work.

4.5 Conclusion

This chapter examined modelling one experiment in the MLM system. In Section

4.1 the timing experiment was described. An important step in modelling the ex-

periment is determining the unknown kinetic parameters. Section 4.2 describes the

details of the parameter estimation and simulation methods used. In Section 4.4 we

investigated the best way to incorporate the Biacore binding data and densitometry

data into the model. Once this was determined, comparing the fits of direct and in-

direct model showed that the model including direct activation was more responsive

to different BH3-only stimulus and provided a better overall fit to the experiment.

Section 4.4.5 highlighted that our model can be used to determine the relative value

of kinetic parameters which have yet to be determined experimentally.
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Chapter 5

Exploring apoptosis in silico

The previous chapter dealt with fitting to and predicting experiments from the

MLM system. This chapter analyses these fitted models and the kinetic model more

generally.

5.1 On the role of auto-activation

To investigate the differences between the direct and indirect activation models a

‘hybrid’ activation model, which includes both mechanisms, is built. Both the direct

activation parameter k1a and the Bcl-xL interaction parameters (k8a, k8d, k9a and

k9d) are allowed to be non-zero. This helps determine if the differences between

the direct and indirect models are a result of the direct activation pathway or the

presence/absence of endogenous Bak*:Bcl-xL complexes.

Using the parameters determined by a non-linear least square fitting procedure

(R2 = 0.52, simulation not shown), we investigate the importance of the direct

activation mechanism in the hybrid model. For the hybrid model we compute the

total concentration of Bak which is activated via direct activation (Γd) and via

auto-activation (Γa):

Γd =

∫ S

0

k1aB(t)T (t) dt, Γa =

∫ S

0

k5aB(t)B̂(t) dt, (5.1.1)

where S is the time of experiment in seconds and B, B̂ and T represent concentration
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of Bak, Bak* and Act in nano-molar, respectively.

Simulations of the MLM experiment with the hybrid model, using (5.1.1), show

approximately 99% of Bak is directly activated under tBid stimulus and approxi-

mately 99% is directly activated under tBIM stimulation. This suggests that the

direct activation is needed to match the observed tBid:Mcl-1 and Bak:Mcl-1 complex

formation under tBid stimulation. Indeed, Figure 5.1 demonstrates the detrimen-

tal effect removing this pathway from the model has on the fit to data, whilst also

demonstrating the minimal effect removing the auto-activation pathway has. In this

simulated MLM experiment, with tBid stimulation, the direct pathway is necessary

to model the timing of Bak activation and the formation of the Bak:Mcl-1 complex.

We have demonstrated that only by including direct activation can we model this

particular MLM experiment. The inclusion of endogenous Bcl-xL has little effect on

our ability to model the experiment. Of course, this result is specific to the models

implemented and the experiments modelled.

5.2 On the role of bistability

Previous studies have discussed the role bistability or hysteresis effects play in the

control of apoptosis by the Bcl-2 family proteins [48, 54, 55, 47, 49]. These studies

demonstrate that deterministic models based on the direct activation hypothesis

have the capacity to exhibit bistable behaviour. This bistability is shown to be

bolstered by a positive feedback loop caused by Bak auto-activation. The presence

of a robust (with respect to parameter variation) bistable switch is identified as a

biologically plausible control mechanism for the intrinsic apoptotic pathway.

In contrast to those studies, the present models are not designed to model Bcl-2

interactions in vivo but rather are designed to mimic behaviour in MLM exper-

iments. Importantly, these experiments represent isolated systems – energy and

material is not allowed to flow freely into and out of the environment. A closed

system is clearly unable to capture a living system in its entirety. It can be proven

mathematically that closed biochemical systems, given sufficient time, approach a

unique thermodynamic equilibrium. In contrast, open systems are able to achieve

a non-equilibrium steady state which is not necessarily unique. In these settings

bistability is therefore not a consideration [78].
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Figure 5.1: Alternative direct activation model, including endogenous Bcl-xL. The
role of the direct activation pathway (k1a = 0) and the auto-activation pathway
(k5a = 0) is demonstrated by removing each of them separately. Dotted lines rep-
resent the complete ‘hybrid’ model concentrations. Solid lines represent reduced
model concentrations. For clarity only species involving Mcl-1 are shown.
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5.2.1 Bifurcation analysis of a reduced fitted model

However, to compare the fitted model we have constructed to those used in other

studies, the possibility of bistability in a modified, open model, which contains

protein production and degradation terms is examined. Bifurcation analysis is per-

formed on a simplified model which includes production and degradation but does

not include Bcl-xL. We have argued that auto-activation as a result of endogenous

BH3 disruption of the Bak* : Bcl-xL complex does not play a dominant role in our

experiments. The simplified reactions we study are

Act + Bak
k1a

�
k1d

Act + Bak* (5.2.1)

Bak* + Mcl-1
k2a

�
k2d

Bak* : Mcl-1

Act + Mcl-1
k3a

�
k3d

Act : Mcl-1

2 Bak*
k4a

�
k4d

Bak2

Bak* + Bak
k5a→ 2 Bak* .

Reactions involving Bcl-xL are removed and, since they do not affect the dynamics

of the remainder of the reactants, Cyt-cC and Cyt-cM are also removed. The Bak

dimers are changed from tetramers to homodimers. Since cytochrome c is not a

part of the model, a non-negligible concentration of Bak2 is taken as the indicator

of commitment to apoptosis.

As before, let x = (B,A,M, B̂, B̂2, ÂM , M̂) be the state vector. The variable

names are listed on page 44. A constant production, p = (p1, p2, p3, 0, 0, 0, 0)T , and

first-order degradation at rate u is added by including in each rate expression:

dxi
dt

= Sbcl2,i · Jbcl2(x) + pi − uxi.

Note that only the production rates for Bak, the activating BH3-only and Mcl-1 –

the uncomplexed proteins – are non-zero.
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The reduced set of equations is

Sbcl2 =



−1 0 0 0 −1

0 0 −1 0 0

0 −1 −1 0 0

0 0 0 1 0

1 −1 0 −2 1

0 0 1 0 0

0 1 0 0 0


. (5.2.2)

The reaction-rate vector is

Jbcl2 =


k1aBA− k1dB̂

k2aMB̂ − k2dM̂

k3aAM − k3dÂM

k4aB̂
2 − k4dB̂2

k5aB̂B

 . (5.2.3)

We investigate bistability numerically. The bifurcation software AUTO [45] is

used to discover steady-states of the model when the activator production rate is

varied – this is presumed to be the trigger for apoptosis in vivo. Kinetic parameters

are taken from those fitted in Chapter 4, provided in Table 4.6. The degradation

rate is set to 10−4 and the production rates are set to p1 = 10−4, p2 = 2× 10−4 and

p3 = 8 × 10−3. Figure 5.2 demonstrates that, for both tBid and tBIM stimulation,

the model does not exhibit bistability. This supports the argument that bistability is

not a requisite feature of a Bcl-2 family model to regulate cytochrome c release. The

continuation also demonstrates that tBIM acts as a better instigator of apoptosis as

it takes a lower production rate of tBIM compared with tBid to produce a persistent

Bak2 complex. This is expected given the kinetic parameters used.

Next we ask the question if it is the topology of the model which excludes the

possibility of bistability or if it is our choice in parameters. Figure 5.3 demonstrates

that the model is indeed capable of acting as a bistable switch for a set of nearby

kinetic parameter values.

Once these parameter values are found, the ‘robustness’ to other parameter vari-
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Figure 5.2: Production rate of activator (p2) is varied and the steady-state con-
centration of Bak and Bak∗ homodimer is observed. Kinetic parameters are those
listed for the direct activation model on page 44, obtained from fitting to MLM
experiment. The production rate p2 is plotted on a log10-scale.

ations can be determined. A two parameter continuation is shown in Figure 5.4, in

which the size of the p2 bistability region is plotted as a function of the value of the

production rate of Bak (p1). Note that only for a small range or p1 values is the

bistability a reversible process. For a wider range of values the bistable mechanism

acts as an essentially irreversible switch – the commitment to apoptosis is difficult

to undo.

5.2.2 Robustness of bistability

The concept of robustness of bistability can be explored further. Instead of pick-

ing a particular parameter set from experimental data we can randomly sample the

parameter space and answer questions about bistability in the system more gener-

ally. Since the kinetic parameters vary over several orders of magnitude, a set of

1000 kinetic parameter values was chosen from a log-uniform distribution between

the values 10−6 and 10−1. The production rates were the same as those in the

above analyses. On each parameter set continuation was performed, again using the

activator production rate p2 as the continuation parameter.
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Figure 5.3: Production rate of activator (p2) is varied and the steady-state concen-
tration of Bak and Bak∗ homodimer is observed. Kinetic parameters are as follows:
k1a = 5 ∗ 10−3, k1d = 10−4, k2a = 5 ∗ 10−3, k2d = 10−3, k3a = 10−3, k3d = 10−3,
k4a = 2 ∗ 10−4, k4d = 2 ∗ 10−2, k5a = 2 ∗ 10−4.

In the reduced model 20.7% of the parameter sets exhibited bistability manifested

by the presence of saddle node bifurcations.1 Interestingly if for each parameter

set the parameter for the Bak activation rate (k1a) is set equal to zero and the

continuation analysis is performed again only, 1% exhibit bistability. Removing the

direct activation pathway from the model creates an indirect activation model and,

in a sense, then provides a comparison between the direct and indirect mechanisms.

In this case the direct model is more robust to parameter variation than the indirect

model. This is the finding of [54] so it is not surprising to find it recapitulated here

for a similar model.

For the reduced, direct model, Figure 5.5 shows the distribution of p2 values at

which bifurcations occurred. Only the irreversible bistable parameter sets (which

contain only one limit point) are shown. A similar plot for the reversible bistable

parameter sets could also be produced, showing the distribution of the size (in

terms of orders of magnitude) of the bistable region, however the reversible bistable

1A saddle node bifurcation occurs at a given continuation parameter value s∗ and fixed point
value x∗ when to the left/right of s∗ there are no fixed points and to the right/left of s∗ there are
two fixed points – one stable and one unstable. For example, Figure 5.3 shows two such bifurcation
points, which delimit the bistable region.
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Figure 5.4: Two parameter continuation of reduced model using kinetic parameters
from Figure 5.3. Curves represent saddle node bifurcations and enclose a bistable
region. The shaded grey box represents values of Bak production rate (p1) which
produce reversible bistability when activator production rate (p2) is varied. The
shaded blue region represents values of p1 in which the bistability is essentially
irreversible – once the Bak dimer is formed p2 would have to be reduced to very
small values (less than 10−6) to reverse to process. White regions represent values
of p1 in which no bistability is present.

parameter sets were too few (n = 17) to produce an informative histogram. The

relative rarity of reversible bistable parameters is perhaps not surprising given the

size of the reversible and irreversible regions shown in Figure 5.4, although in that

figure it was a production rate that was varied, not the kinetic parameters.

5.2.3 Discussion

Though bistability remains a possibility within our model, it does not play a role

in the MLM experiments herein performed and likely does not play a role in a

model in vivo system based on the same determined parameters. This suggests that

control of MOMP is possible without resorting to a bistable switch. Indeed, certain
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Figure 5.5: Histogram of p2 bifurcation values from set of randomly sampled pa-
rameters. Only sets exhibiting irreversible activation are shown. Mean = -3.62, Std
= 1.50.

requisite features of the developed bistable systems (e.g [47]) may be biologically

unrealistic, and this raises doubts as to their relevance in vivo. These features are

the reversibility of Bak activation and the significant role of Bak auto-activation.

Neither of these are known to occur on a relevant timescale compared to the other

interactions being considered.

There is also the possibility that studying what happens at dynamical equi-

librium is not reflective of what happens in vivo. Indeed, in their study on the

‘snap-action’ response of the apoptotic pathway Albeck et al [58] write that, given

all the other processes occurring prior to and following cytochrome c release, cellular

decisions may have been made long before any dynamical steady states are reached

and that bistability may not be needed for a signal transduction system to commit

to a decision. Bistability in the specific sense studied in this chapter is an attractive

concept in systems biology for its ability to act as a robust biological switch between

two candidate cell states and for its dynamical simplicity. It is not necessarily the

only means by which a cell can make the decision to commit to apoptosis, however.
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5.3 Sensitivity analysis

In addition to investigating the robustness of bistability in the model we also study

the robustness or sensitivity of the simulations to parametric variation. As outlined

in Section 2.2.3, we will use the sensitivity metric employed in [42]. The metric gives

a measure of the proportional response of a given species concentration throughout a

simulation to a proportional perturbation in one of the kinetic parameters. The sen-

sitivities are then unitless quantities. A species with low sensitivity can be described

as robust.

5.3.1 Local analysis

Figure 5.6 shows the robustness of the hybrid model presented in Section 5.1 for

tBid and tBIM stimulation respectively. A notable difference is observed between

the overall sensitivities of tBid stimulation compared with tBIM. For instance, un-

der tBid stimulation the cytosolic concentration of cytochrome c and of the mul-

timerised Bak shows remarkable sensitivity to most parameters, in particular k2a

or the association rate of the Bak : Mcl-1 complex. Since under tBid stimulation

the concentration of cytochrome c release is small (see for example Figure 4.9) the

proportional change is naturally going to be more sensitive to changes in absolute

concentrations. However, the sensitivity to k2a remains striking. In this instance,

more than any other parameter, the association rate of Bak:Mcl1 exerts control over

whether cytochrome c is released from the mitochondrial membrane. This is an in-

sight which can be tested experimentally. If the formation of the Bak:Mcl-1 complex

plays a large role in the release of cytochrome c then, with tBid stimulation, even

small changes in the endogenous levels of Bak or the added levels of Mcl-1 should

have a large effect on cyt c release timing.

In contrast, under tBIM stimulation, when the unperturbed system predicts

cytochrome c release, the sensitivity of cytochrome c release is greatly diminished.

In particular, the sensitivity to the parameter k2a no longer stands out. For this

set of parameter values, given tBIM’s activation strength, cytochrome c release is

inevitable and perturbing the parameter values slightly is unlikely to change this

outcome. Converse to the above prediction, with tBIM stimulation our analysis
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suggests that varying the concentration of endogenous Bak or added Mcl-1 should

have less of an effect on the timing of cytochrome c release.

The two figures taken together show that under different types of BH3 stim-

ulation different complexes play different levels of importance in the regulation of

MOMP. This complicates our understanding of Bcl-2 induced apoptosis. Sensitivity

analysis can provide insight into the mechanisms which are relevant and under which

situations they arise. Interestingly, [42] report that the most downstream parts of

the model are quite robust – indicating strong overall robustness of the pathway.

This is in contrast to our findings which suggest that the most downstream compo-

nents of the model (cytochrome c release) can be some of the least robust. Perhaps

this is because of the minimal role auto-activation appears to be playing in the sim-

ulations and the lack of bistability in the system, since feedback loops can play a

stabilising role in the dynamics.
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5.3.2 Global analysis

We can again consider the robustness of the model more generally if we sample

the parameter space as with the bifurcation analysis. Figure 5.7 shows the mean

sensitivity of each species and parameter pair for a set of 2000 randomly sampled

sets chosen from a log-uniform distribution between 10−6 and 10−1. Some obtained

sensitivities are very large in magnitude and some very small, to the point that the

plot must be shown on a log scale. The most sensitive species are again cytochrome

c and the dimerised Bak, as in the ‘local’ sensitivity analysis above. This suggests

that in general our model does not provide robust regulation of apoptosis. Of

course, as noted, there can be marked differences in the dynamics for a model with

and without production and degradation rates. In the present simulations, without

the possibility of dynamical phenomena such as bistability, we should not expect

the system to operate in a robust fashion. It is interesting to note the parameters

which cause the largest variation in the model are the association rate of Bak:Mcl1

complex (as before) and the dissociation rate of the Act:Mcl1 complex. Future MLM

experiments can test the hypothesis that these parameters have a large influence on

whether cytochrome c is released in a timely fashion or not. On the other hand, the

parameter having least effect on the simulations is sensibly the rate of cytochrome c

release in the presence of Bak dimers (k7a). This is expected, given that the release

of cytochrome c does not effect the rest of the model.
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Figure 5.8: MLM experiments demonstrating Mcl-1 blocking tBid from releasing
cytochrome c and Mcl-1 not blocking tBIM from releasing cytochrome c. See western
blot data in Figure 1.6. Each column represents a separate mitochondrial incubation
in which 20nM Mcl-1 and the specified level of BH3-only stimulus is spiked-in to the
system. Unlike the timing experiment in Figure 4.1, samples are all taken following
two hours incubation.

5.4 Modelling other experiments

This section uses the fitted model to predict the outcome of another experiment

performed with the MLM system. Here, the direct and indirect models are used to

predict cytochrome c release in the experiment outlined in Figure 5.8.

The experiments demonstrate that tBid stimulation is not able to produce sig-

nificant cytochrome c release in the presence of Mcl-1, whereas tBIM is able to.

Binding data indeed suggest that tBIM binds more strongly with Mcl-1 than tBid,

and therefore can disrupt the Bak:Mcl-1 complex. Plots are interpreted qualita-

tively: the Bak:Mcl-1 complex is present or is not present and either cytochrome

c has been released or has not. The western blot on which this data is based is

illustrated in Figure 1.6.

Model predictions

The direct and indirect models specified in Table 4.6 are used to predict the con-

centration of Bak*:Mcl-1 and multimerised Bak following two hours incubation as

97



per the experiment (Figure 5.9 and Figure 5.10). Multimer Bak is used as a surro-

gate for cytochrome c release since cytochrome c release is, in the current models,

inevitable regardless of the concentration of BH3-only stimulus.

Over the range of concentrations tested, a clear Bak*:Mcl-1 complex and minimal

Bak multimerisation is predicted with the direct model and tBid stimulation. With

increasing tBIM stimulation the model predicts increasing and subsequently de-

creasing Bak*:Mcl-1 concentration and slowly increasing Bak multimerisation. This

is in contrast with the discrete drop in Bak:Mcl-1 concentration and release of cy-

tochrome c in observed experimentally between 3nM and 10nM tBIM. Given the

stoichiometry one might expect this threshold to exist between 10nM and 30nM –

the threshold between excess Mcl-1, able to sequester all activated Bak, and insuffi-

cient Mcl-1, unable to sequester all activated Bak. The reason for this discrepancy

is unknown.2

The indirect model, equally, fails to account for this release of cytochrome c with

10nM, but not 3nM, of tBIM. With tBid stimulation the indirect model also fails

to predict a strong Bak:Mcl-1 complex for most input tBid concentrations, as is ob-

served. The predictions take a similar form for both tBid and tBIM stimulation – in

contrast with both experiment and the direct model predictions. In this sense, the

indirect model exhibits considerably less control over the regulation of cytochrome c

release. Perhaps this is because, assuming indirect activation only, the rate of acti-

vation depends only on the auto-activation rate and not on the activation potencies

of the BH3-only proteins.

Both the direct and indirect models lack the ability to fully reproduce what is ob-

served in this experiment, especially the discrete change in behaviour when the spike

in concentration of tBid or tBIM is increased past a threshold. The direct model

could be described as more responsive to different BH3-only stimulation compared

to the indirect model, and is therefore more realistic. The direct activation pathway

appears to be necessary to produce significantly different results for different BH3-

only proteins and suggests that differing rates of direct activation are a key factor

in whether cytochrome c release is observed or not.

An important shortcoming of the model is that, by treating Bak activation as

irreversible in simulations, eventually all Bak is activated and, regardless of how little

2Dr. Ruth Kluck, WEHI. Personal communication
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activator protein is added, after sufficient time cytochrome c release is predicted.

This is in contrast with the experiments presented here in which minimal BH3-only

stimulation resulted in no cytochrome c release. Making Bak activation reversible

may remedy this deficiency of both models.

5.5 Conclusion

This chapter analysed various features of the model we have built of the Bcl-2 path-

way. A hybrid model containing both endogenous Bcl-xL and direct activation was

constructed to test the role played by both direct and auto-activation. Bistability

was investigated using both the fitted kinetic parameters and a set of randomly

chosen parameters. Bistability was found to not play a role in either the direct

or indirect fitted models. The kinetic models, however, are capable of exhibiting

bistability. Bistability is more commonly observed in the direct model compared

to the indirect model. Sensitivity analysis was performed using the fitted kinetic

parameters and globally by sampling the kinetic parameter space. From this an

experimentally verifiable prediction was made. The outcome of a separate MLM

experiment was predicted using the fitted direct and indirect models. While the

model including direct activation made more consistent predictions to the data,

both models failed to capture qualitatively its behaviour. The direct activation

rate, determined by the form of BH3-only stimulation, was found to be a key factor

in controlling cytochrome c release.
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Figure 5.9: Direct model prediction of second MLM experiment. Each column
represents a separate experiment in which 20nM Mcl-1 and the specified level of
BH3-only stimulus is spiked-in to the system. Samples are taken following two
hours incubation.
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Figure 5.10: Indirect model prediction of second MLM experiment. Each column
represents a separate experiment in which 20nM Mcl-1 and the specified level of
BH3-only stimulus is spiked-in to the system. Samples are taken following two
hours incubation.
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Chapter 6

Conclusion

6.1 Principal findings

This thesis developed a mass-action kinetic model of a subset of the Bcl-2 family of

proteins relevant to understanding a simplified experimental system. The principal

aim of the experiments was to observe under what circumstances the Bak:Mcl-1

complex both formed and was disrupted. Sensitivity analysis revealed that under

specific forms of BH3-only stimulation the Bak:Mcl-1 association rate was a decisive

parameter in controlling the rate of cytochrome c release. This indicates that when

the Bak:Mcl-1 complex is formed and disrupted indeed plays an important role in

apoptosis regulation. The framework constructed in this thesis provides the means

to investigate similar questions for other protein complexes and under different BH3-

only stimulation, including candidate anti-cancer BH3-only mimetics.

The model was also constructed to address more general questions. Before any

analysis was performed, however, significant care was taken to ensure that the model

conformed with present knowledge of the Bcl-2 family and observed behaviour of

the MLM model system. How binding data obtained from an SPR based Biacore

machine could be utilised in our models was investigated. Binding data was used in a

comparative sense only, ensuring that our models were consistent with the data but

not significantly constrained by it. Mass transport considerations were considered

briefly and modelling diffusion-limited interactions, at least in the way implemented,

were decided to not be useful.
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Once confident that the model reproduced key behaviour in a particular MLM

timing experiment, aspects of apoptosis regulation could be investigated. Consider-

able scientific effort has been spent determining whether or not the direct activation

of the pro-apoptotic protein Bak plays a role in the intrinsic death pathway. In

calibrating our model to the MLM timing experiment the direct activation mecha-

nism was found to be a necessary component of the model, indicating that direct

activation indeed plays an important role in apoptosis regulation. Our modelling

also suggests that the principal mechanism by which different forms of BH3-only

stimulation elicit different responses from the cell is through the direct activation of

Bak.

The role of bistability in the MLM experiments and in apoptosis more generally

was addressed. Using kinetic parameters found by fitting to a MLM timing experi-

ment bistability was not found to occur in an augmented system which included pro-

duction and degradation rates. Confirming findings of previous bistability studies,

however, other regions of the model’s parameter space did indeed exhibit bistability.

As in previous studies, bistability was more prevalent in the direct model compared

with an indirect model. We suggest that bistability does not play a significant role

in the modelled Bcl-2 family interactions.

6.2 Significance

This work represents the first effort to construct a strictly biologically constrained

model of the intrinsic apoptosis pathway, constrained both in terms of the kinetic

parameters used and in terms of the behaviours it exhibits. This provides a more

realistic model which means we can have more faith in any conclusions drawn from

it. Combining the ‘direct’ and ‘indirect’ activation models allows us to compare the

relative importance each mechanism plays in the MLM system and hence in apopto-

sis more generally. Sensitivity analysis allowed us to identify important interactions

in the model, which can lead to experimentally verifiable predictions.

Dynamical properties of the model such as bistability have been thoroughly

investigated in previous studies. Contrary to these studies, based on our models,

we do not suggest that bistability plays any significant role in the Bcl-2 mediated

apoptosis pathway.
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The necessarily simplified explanations biologists consider when studying a com-

plex family of protein interactions may be inadequate to understand apoptosis regu-

lation. The truth may lie outside what can be easily determined experimentally and

a reliable computational model may be needed to fully comprehend the behaviour

of the Bcl-2 family of proteins. This thesis has laid the foundation for future models

which can realise this goal. Understanding the specific role protein complexes play

in the Bcl-2 family will contribute to making targeted anti-cancer drug therapies

more specific and effective.

6.3 Challenges

A number of challenges presented themselves in the course of this project. Obtain-

ing experimental MLM data takes a considerable amount of time and effort. This

involves preparing the stocks of Bcl-2 protein, performing the experiments and the

subsequent densitometry analysis. This means that the amount of data available for

our models was limited. Since no repeat experiments were performed with the same

stock of BH3-only protein, no indication of the variability and hence no confidence

intervals for our parameter estimates could be obtained. Different stocks of BH3-

only proteins have different Bak activating efficiencies, and this makes extrapolating

our parameter estimates and model conclusions difficult. Indeed, the difficulty en-

countered when trying to extrapolate our models to predict the outcome of a second

MLM experiment reflect the need for a large amount of data to be available to have

confidence in the accuracy of the models built.

Our modelling efforts commenced after the experimental design and protocols for

working in the MLM system had been established. Initially, the design of the experi-

ments and methods of quantification was not chosen with mathematical modelling in

mind which made creating our model more difficult, necessitating, for instance, the

arguments detailed in Section 4.1.1. These difficulties highlight the value in working

with biologists from the beginning of a project to ensure the aims and expectations

of the mathematical modelling are compatible with the aims and possibilities of

the experimental work, to ensure that the experimental data will be useful to the

modellers and that the results from the modelling are useful to the biologists.

These challenges are an inherent part of the developing, interdisciplinary field
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of mathematical biology. However, establishing mathematics as a valuable tool in

biological research and providing inspiration for novel mathematics makes these

challenges worth overcoming.

6.4 Future work

A number of possible extensions to the current work present themselves. To simplify

the analysis and programming difficulty a reduced dimension model was analysed in

AUTO when investigating bistability. While the reduced model still provides useful

results it would be interesting to compare the reduced to a full model.

Constructing a mathematical model of a biological system allows us perform

experiments in silico which have not yet been, or are unable to be, performed in

vitro. The MLM experiments here worked exclusively with tBid and tBIM. Through

simulation is it a straightforward matter to investigate what happens in similar

experiments with different forms of BH3-only stimulation and propose experiments

which would provide the most biological insight. The model could be extended to

include not just the MLM system but the intrinsic apoptosis pathway more generally,

by including additional Bcl-2 proteins. This is an important application of any

mathematical model which was not fully explored in this thesis.

Enhancements to the realism of the model could also be made. The induction

of MOMP may require very few dimerised Bak molecules on the outer membrane

in which case stochastic effects may play an important role in apoptosis regulation.

Stochastic reaction dynamics or a cellular automaton model may be more appro-

priate in this case and it would be interesting to see the difference between our

deterministic model and a stochastic equivalent.

Finally, since a lot, but not all, of the modelled interactions occur on the mito-

chondrial membrane, it would be useful to consider in more detail mass-transport

effects. This could be achieved by implementing a multi-compartment model which

separated the concentrations and kinetic rates into two compartments – membrane

associated and cytosolic.

104



6.5 Concluding comments

The complexity of biological systems is in some sense incongruous with the abstrac-

tions and generalisations which mathematics builds on. General principles or laws

in biology are hard to come by. Nonetheless, as advances in technology continue

to allow more and more biological phenomena to be quantified, mathematical mod-

elling will continue to play an ever increasing role in our understanding of living

systems. This thesis represents one such attempt to extract, from a biological world

of immense intricacy, a precise mathematical framework, in an area of significant

and immediate scientific interest, programmed cell death.
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