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As information flows through the brain, neuronal firing progresses from encoding the world as sensed by the
animal to driving the motor output of subsequent behavior. One of the more tractable goals of quantitative
neuroscience is to develop predictive models that relate the sensory or motor streams with neuronal firing.
Here we review and contrast analytical tools used to accomplish this task. We focus on classes of models in
which the external variable is compared with one or more feature vectors to extract a low-dimensional
representation, the history of spiking and other variables are potentially incorporated, and these factors
are nonlinearly transformed to predict the occurrences of spikes. We illustrate these techniques in applica-
tion to datasets of different degrees of complexity. In particular, we address the fitting of models in the pres-
ence of strong correlations in the external variable, as occurs in natural sensory stimuli and in movement.
Spectral correlation between predicted and measured spike trains is introduced to contrast the relative suc-
cess of different methods.
Introduction
Advances in experimental design, measurement techniques,

and computational analysis allow us unprecedented access to

the dynamics of neural activity in brain areas that transform sen-

sory input into behavior. One can address, for example, the rep-

resentation of external stimuli by neurons in sensory pathways,

the integration of information across modalities and across

time, the transformations that occur during decision-making,

and the representation of dynamic motor commands. While

new methods are emerging with the potential to elucidate com-

plex internal representations and transformations, as reviewed in

Cunningham and Yu, 2014, here we will focus on established

techniques within the rubric of neuroinformatics that summarize

the relationship between sensory input or motor output and the

spiking of neurons. These techniques have provided insight

into neural function in a relatively large number of experimental

paradigms. We discuss these methods in detail, illustrate their

application to experimental data, and contrast the interpretation,

reliability, and utility of the results obtained with different

methods.

The methods that we will consider aim to establish input/

output relationships that capture how spiking activity, generally

at the single-neuron level, is related to external variables: either

sensory signals or motor output. These models focus on a

description of the statistical nature of this relationship without

any direct attempt to establish mechanisms; rather, they provide

a compact representation of the components in a stimulus that

cause a neuron to fire a spike.

Each of our methods is described by a model that relates the

external input to a pattern of spiking (Box 1). A model has several

stages (Figure 1A). The first stage includes linear feature vectors
that extract a low-dimensional description of the stimulus that

drives firing. In spike-triggered average (STA) models, a single

feature is extracted from the input. These models have been

very successful for neurons in the initial steps of sensory pro-

cessing, such as retinal ganglion cells (Chichilnisky, 2001; Pillow

et al., 2005) in vision or trigeminal cells in vibrissa touch (Jones

et al., 2004; Campagner et al., 2016). When a single-feature vec-

tor is insufficient to fully describe the firing of the cells, additional

features are included. These can be determined in a number of

ways, including through spike-triggered covariance (STC) and

maximum noise entropy (MNE) methods (Figure 1A). The second

stage in thesemodels is a static, nonlinear function thatmaps the

strength of the feature in the time-varying input to an output firing

rate; this nonlinear function can, for example, ensure that the

predicted spike rate does not go below zero and that it saturates

for very large inputs. This succession of linear feature selection

followed by nonlinear firing rate prediction means that models

of this type are generally known as linear/nonlinear (LN) cascade

models. In addition to the stimulus dependence, the so-called

generalized linear model (GLM) allows one to incorporate a

dependence on the history of firing, as well as the history of firing

by other neurons in the network, and potentially other stimulus or

task parameters as well (Figure 1A).

The output of these models can be taken to be a time-depen-

dent firing rate. As a final stage, however, one may wish to

generate a spike train. To do so, one can assume a specific

mathematical process that converts the rate into spikes on a

probabilistic basis. This is called a noise model and is generally

chosen to be a Poisson or a Bernoulli process, which are

described by only a single parameter. In many cases these

particular noise models provide a good approximation of spike
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Box 1. Glossary of Model Terms

d Dimensionality reduction: in a neuroscience context, dimensionality reduction can be applied to stimulus inputs and to neural

responses. Finding a reduced representation for data leads to fewer variables to specify each data point. The reduced repre-

sentation for responses leads to a restricted range of spiking patterns.

d Feature vector: this is the mathematical representation of a template for a stimulus that is relevant to the neuron’s response.

When the overlap of the stimulus with this vector is large, i.e., a large inner product, the chance of observing a spike is signif-

icantly different from the baseline probability.

d Generalized linear model: a model for the output of a neuron that is a nonlinear function of a sum of inputs linearly filtered by a

feature vector and the history of spiking filtered by a history filter.

d History filter: the weights that multiply the recent history of spiking output of the neuron to modulate the future responses.

d Linear/nonlinear model: a class of phenomenological models of neuronal spiking. ‘‘Linear’’ refers to the extraction of stimulus

components by linear filtering with feature vectors. ‘‘Nonlinear’’ refers to the static relationship between the filtered stimulus

components and the firing rate.

d Maximum entropy model: in a neuroscience context, these are probabilistic models of the associations between inputs and

outputs. The probability distribution of producing a spike, given a stimulus as the input, is chosen as the one with the largest

entropy subject to a set of predefined constraints that determine the family of associations that one wishes to model.

d Network model: a mathematical description of the joint activity of multiple units. The predicted responses depend on interac-

tions of each neuron with the rest of the network elements.

d Nonlinear input/output function: this relates the filtered stimulus components to the firing rate; it is also called a static

nonlinearity.

d Spike-triggered average: the feature vector that results when many examples of sensory inputs that trigger spikes are aligned

relative to the spike time and averaged. This procedure is equivalent to so-called reverse correlation.

d Spike-triggered covariance: the covariance matrix formed from stimulus segments that precede a spike. This matrix quantifies

how different stimulus components vary together preceding a spike. The eigenvectors of the matrix form a coordinate frame

that captures the stimulus’ structure that is relevant to predict a spike.
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trains recorded frommany different areas in the brain (Hagiwara,

1954; Werner and Mountcastle, 1963; Softky and Koch, 1993).

The form of the feature vectors, nonlinearity, and history de-

pendencies can reveal properties of the system that test theoret-

ical concepts, such as how efficiently the stimulus is encoded by

a neuron and how robust the encoding is to noise. For example,

changes in the feature under different stimulus conditions can

reveal the system’s ability to adapt to, or cancel out, correlations

in the sensory input (Hosoya et al., 2005; Sharpee et al., 2006).

Further, changes in the nonlinearity reveal how the system can

modulate its dynamic range as the intensity of the stimulus

evolves (Fairhall et al., 2001; Wark et al., 2007; Dı́az-Quesada

and Maravall, 2008).

While representing neuronal spiking through a predictive sta-

tistical model is only a limited aspect of neural computation, it

is a fundamental first step in establishing function and guiding

predictions as to the structure of neural circuitry. The key to

any predictive model of a complex input/output relationship is

dimensionality reduction, i.e., a simplification of the number of

relevant variables that are needed to describe the stimulus

(Pang et al., 2016). Here our primary goal is to present current

methods for fitting descriptive models for single neurons and

to directly compare and contrast them using different kinds of

data. With the growing importance of multi-neuronal recording,

it will also be necessary to seek lower-dimensional representa-

tions of network activity. Although we will largely focus on

methods to reduce the representation of external variables in

order to predict firing, we will further consider a procedure that

yields a reduced description of both external and neural vari-

ables in models of network activity.
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We have chosen three datasets for analysis here as illustrative

examples. The first set consists of multi-electrode array record-

ings from salamander retinal ganglion cells that have been pre-

sented with a long, spatiotemporal white noise stimulus. This

preparation has been a paradigmatic one in that many iterations

of predictive modeling have been first successfully applied

(Chichilnisky, 2001; Touryan et al., 2002; Rust et al., 2005; Pillow

et al., 2008). The second and third set involve more challenging

cases: the relationship between single unit recordings of

thalamic neurons of alert, freely whisking rats and the recorded

vibrissa self-generated motion (Moore et al., 2015b); and the

relationship between unit recordings from motor cortex of mon-

keys and the recorded position and grip strength of the hand as

monkeys use a joystick to manipulate a robotic arm (Engelhard

et al., 2013). Considering data from behaving animals requires

us to discuss several important issues, including smaller data

size and the highly correlated and non-repeated external

variables that are generated by natural stimulus statistics and

self-motion.

Whenever fitting data, one should avoid fitting structure in the

data that is specific to the particular sample chosen as the

training set. Further, any identified trends should generalize to

other samples from a similar dataset. Thus one must always

test the performance of a model with a portion of the data that

was not used to build the model; typically 80% of the data are

used to build the model and 20% for validation. We include

methods for model validation and applications to all of our data-

sets. By permuting the data among the fractions used to fit and

to validate, one builds up a so-called jack-knife estimate of the

variance for the reliability of the fit.



B

A  Figure 1. Schematic for the Generation of
Spike Trains from Stimuli from Different
Classes of Models
(A) An LN model consists of a number of pro-
cessing steps that transform the input stimulus
into a predicted spike train. Here we illustrate
the types of processing stages included in
the computational methods we consider. Most
generally, the stimulus is projected onto one or
more features and may then be passed through a
nonlinear function whose dimensionality is given
by the number of features. The result of this may
be summed with a term that depends on the
spike history and passed through a further
nonlinear function. Finally there is a stochastic
spike generation mechanism that yields a spike
train. None of the methods we will consider have
all model components; one should choose
among the methods depending on the nature of
the stimulus, the type of response, and the need
for parsimony. For example, only the generalized
linear model includes the influence of the spike
history.
(B) Here we illustrate how an example visual
stimulus is reformatted as a time-dependent
vector. Each stimulus frame has two spatial co-
ordinates and a total of NX pixels. First, the frame
presented in each time point is unwrapped to give
a NX-dimensional vector. Then, if the model we
will construct depends on the stimulus at NT time
points, the final stimulus is a vector in which the
spatial component is copied across consecutive
time points to form N=NX3NT components.

Neuron

Primer
We provide all of the code and spiking and stimulus data

required to reproduce our results. Simple modification of this

code will enable readers to extend the analysis methods we pre-

sent to new datasets. As a brief refresher for the mathematics

that we use throughout the Primer, we provide definitions of all

essential terms (Box 2) as well as review basic linear algebraic

manipulations (Box 3). Lastly, a glossary of all mathematical

symbols is provided (Box 4).

The Linear/Nonlinear Modeling Approach

Linear/nonlinear (LN) models have been successful in providing

a phenomenological description for many neuronal input/output
transformations and are constructed by

correlating spikes with the external vari-

able. Some models are nonparametric

in the sense that both feature vectors

and the nonlinear input/output response

of the neuron are derived from the data.

Other models are parametric, in that

the mathematical form of the nonlinearity

is fixed. While the external variable, as

emphasized in the Introduction, could

be either a sensory drive or a motor

output, we will use the term ‘‘stimulus’’

for convenience from now on. Note,

however, that while for sensory drive

one considers only the stimulus history,

in motor coding applications one would

also consider motor outputs that extend

partially into the future.
Weexpress the neuron’s response rðtÞ at time t as a function of

the recent stimulus sðt0Þ (with t0 < t) and, also, potentially its own

previous spiking activity:

rðtÞ= fðrðt0 < tÞ; sðt0 < tÞÞ: (Equation 1)

The stimulus vector sðt0 < tÞmight, for example, represent the in-

tensity of a full-field flicker or the pixels of a movie, the spectro-

temporal power of a sound, the position of an animal’s vibrissae,

and so on. The choice of this initial stimulus representation is

an important step on its own and could in principle involve a
Neuron 91, July 20, 2016 223



Box 2. Glossary of Mathematical Terms

d Bayes’ rule: in a neuroscience context, it relates the predicted probability of a spike given a stimulus to the measured

probability of a stimulus eliciting a spike. More generally, Bayes’ rule relates the probability pðA jBÞ of event A occurring

given that event B has occurred to pðB jAÞ, the probability of event B occurring given that event A occurred, through

pðB jAÞ=pðA jBÞpðBÞ=pðAÞ.
d Coherence: a measure of how two scalar quantities track each other over time, expressed as a function of frequency. Here we

use it to assess the relation between predicted and observed spike trains.

d Correlation: a measure of how related two variables are to each other.

d Correlation function: the correlation measured as a function of the lag, e.g., time lag, between two variables. The correlation of a

signalwith itself is called theautocorrelation; it providesanestimateofhowsimilara futurevalue is to thecurrent valueofavariable.

d Covariance: a measure of how related multiple components of two vector-valued variables are.

d Gradient descent: when searching for the minimum of a function, one can think of the values of this function as a surface.

Finding the minimum corresponds to computing the slope, or gradient, of the surface and moving in the direction of the steep-

est gradient. If the surface is convex, or bowl-like, it is guaranteed that theminimum is global, i.e., there are no points with lower

value of the function than the local minimum found by the algorithm.

d Entropy of a probability distribution: this quantity describes the number of states a certain variable can attain and how

frequently those states occur. In a neuroscience context, the variable could be the spiking response of a group of neurons;

in this example the states represent the patterns of spikes emitted by the population of cells. Entropy increaseswith the number

of states andwith the uniformity of the probability of their occurrence. It represents themaximumamount of information a signal

can convey about the variable. Specifically, if the probability of event x, drawn from an ensemble of random variables, X, is pðxÞ,
then the entropy of that ensemble is HðXÞ= P pðxÞlog2pðxÞ. When all states, i.e., values of x, are equally likely, the entropy is

equal to the log of the number of states.

d Likelihood: the probability of the observed data given the model parameters, understood as a function of the model parame-

ters. It is often convenient to use the log-likelihood because it simplifies the dependence on the model parameters consider-

ably. In maximum likelihood methods, the likelihood is the function being maximized.

d Mutual information: a measure of the co-dependence between two variables that reports how the uncertainty in one variable is

reducedbyknowing thevalueof theother.Thismeasurecancapturehigher-order statistics thatcorrelationandcoherencedonot.

d Poisson process: a random sequence of events in which the probability of observing an event in a given interval of time is

independent of all past and future non-overlapping intervals. For a sufficiently small interval, the probability that a single event

occurs is equal to the rate of events times the size of the interval. In a neuroinformatics context, a Poisson spiking process has

the property that a spike at any interval in time is independent of previous spiking by the neuron. This implies that the inter-spike

interval (ISI) has an exponential distribution when the rate does not change over time.

d Principal component analysis: this is a statistical method to find a set of orthonormal vectors within a space that explains the

maximum amount of variance of the data with the fewest vectors.

d Whitening: the procedure by which a signal with arbitrary spectral power is transformed to have a uniform spectral density. For

example, a set of variables that have non-zero correlations among themselves will be transformed to a new set that have no

correlations. The correlations are measured by a covariance matrix; all cross-correlations among the whitened variables are

zero, and the variance of all transformed variables are equal.
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nonlinear transformation, e.g., the phase of position in a whisk

cycle, a case we will discuss later. The function fð,Þ generally
represents a nonlinear dependence of the response on the stim-

ulus. The response rðtÞ is equivalent to the conditional probability

of spiking and is of the form

rðtÞ=pðspikeðtÞ j rðt0 < tÞ; sðt0 < tÞÞ: (Equation 2)

The response rðtÞ is generally taken to be the expected firing

rate of a random process, which is assumed here to be

Poisson. We will denote the spike counts observed on a single

trial between the time t � Dt and t as nðtÞ.
The LN model is a powerful approach that allows one to

approximate the input/output relation (Equation 1) using a

plausible amount of experimental data. The key idea is to

first find a simplified description of the complex stimulus that

captures its relevance to neuronal firing in terms of one or a
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small number of feature vectors. One then fits the spiking

response as a nonlinear function of those few components.

Thus the first, ‘‘linear’’ stage of the model acts to reduce the

dimensionality of the stimulus. The stimulus sðt0 < tÞ is in

general very high dimensional. For example, a gray-scale

image on a 10310 screen is specified by 100 numbers, which

correspond to the light intensity at every location, and

these numbers can take any of a range of values. Thus the

description of the image is 100-dimensional. If a visual

neuron is sensitive, for example, only to the orientation and

spatial frequency of the image patch in the center of

the screen, this effectively selects a single specific configura-

tion of the 100 values as relevant: all that matters for that

neuron’s response is how much ‘‘oriented bar’’ there is in

the central region of the image. Using linear filtering, one can

then take any arbitrary stimulus image, multiply it at every

point by the oriented bar configuration, and sum to give a



Box 3. Refresher on Linear Algebra

We use lowercase letters for scalars, i.e., a and b; we use bold lowercase letters for vectors, i.e., a and b; and we use bold

uppercase letters for matrices, i.e., A and B. As a refresher in linear algebra, we start with a two-dimensional system, i.e., vectors

with two components, to illustrate essential concepts that further apply in high dimension. We define two two-dimensional vectors,

v1 and v2, as

v1 =

�
v1ð1Þ
v1ð2Þ

�
=

�
2
�2
�
and v2 =

�
v2ð1Þ
v2ð2Þ

�
=

�
0
2

�
;

where the numbers in parentheses label the row (Figure B3A).

The inner product of two vectors, denoted by ‘‘,,’’ is the sum of component-by-component products. Thus

v1,v2 = 23 0+ � 23 2= � 4:

The sum of a set of vectors is given by the component-by-component summation. Thus the sum of v1 and v2 is (Figure B3A):

v1 + v2 =

�
2
�2
�

+

�
0
2

�
=

�
2
0

�
:

The transpose of a vector, denoted by ‘‘u,’’ is found by switching labels of row and columns, so that

vu2 = ð0 2 Þ:

Thus another way to write the inner product of v1 with v2 is vu1 v2, as we multiply a one-by-two vector with a two-by-one vector

to get a single number, or scalar. On the other hand, the so-called outer product, v1v
u
2 , multiplies a two-by-one vector with a

one-by-two vector to form a two-by-two matrix, i.e.,

v1v
u
2 =

�
2
�2
�
ð0 2 Þ=

�
23 0 23 2
�23 0 �23 2

�
=

�
0 4
0 �4

�
:

For any matrixM, there exist special vectors v that do not change in direction but only in length when they are multiplied byM. This

is expressed byMv= lv, where thematrixM is square, i.e., it has the same number of rows as columns. A special but useful class of

square matrices have M = Mu and are referred to as symmetric matrices.

For a two-by-two symmetric matrix, the eigenvectors v1 and v2 and associated eigenvalues l1 and l2 satisfyM = l1v1v
u
1 + l2v2v

u
2 .

The v s are orthogonal, i.e., they satisfy v1,v2 = 0, and they are normalized to satisfy v1,v1 = v2,v2 = 1. How do we find the v s? For

concreteness, we consider a matrix M defined by

Mh

�
1� a a

a 1� a

�
;

where a is a scalar. This satisfies the eigenvalue equation Mv= lv, or�
1� a� l a

a 1� a� l

�
n= 0:

There is a so-called trivial solution, n= 0, as well as two non-zero eigenvectors. The latter are found by setting the determinant,

denoted j/ j , to zero, i.e., ���� 1� a� l a

a 1� a� l

���� = ð1� a� lÞ2 � a2 = ðl� 1Þðl� 1+ 2aÞ= 0;

(Continued on next page)
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Box 3. Continued

and the eigenvalues are l1 = 1 and l2 = 1� 2a. The corresponding eigenvectors are found from substitution plus normalization

and are

v1 =
1ffiffiffi
2
p
�
1
1

�
and v2 =

1ffiffiffi
2
p
�

1
�1
�
;

respectively (Figure B3B). The dominant eigenvector, v1, points in the direction of equal variation of v1ð1Þ with v1ð2Þ.
A final issue is that any symmetric matrix with non-zero eigenvalues has an inverse, denotedM�1, such that the product is equal to

the identity matrix, i.e.,MM�1 = I, where I has ones along the diagonal and zeros everywhere else. Thus all of the eigenvalues of the

identity matrix are one. For the above example,

M�1 =
1

1� 2a

�
1� a �a
�a 1� a

�
;

and the eigenvalues of M�1 are l�11 and l�12 .

v1

v2

v(1)

v(2)

v1v2

A

v(1)

v(2)B

v1+v2
0 0

Figure B3. Two-Dimensional Vector Plots
(A) Example vectors.
(B) Eigenvectors of our example matrix M. Each has unit length.
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single number that quantifies the presence of the relevant

feature in the image.

More formally, the relation fð,Þ in Equation 1 is divided into two

parts: a linear and a nonlinear stage. In general, the stimulus may

consist of a sequence of successive instantaneous snapshots,

e.g., frames of a movie, each withNX spatial pixels or an auditory

waveform with NX frequency bands. With each ‘‘frame’’ discre-

tized in time at sampling rate Dt (Figure 1), there is some time-

scale T =NTDt beyond which the influence of the stimulus on

future spiking can be assumed to go to zero, defining the number

of relevant frames as NT . Then the total number of components

defining the stimulus, or dimensionality of the stimulus space,

denoted N, is given by

N=NX 3NT : (Equation 3)

This full N-dimensional stimulus is processed by a set of linear

filters defined by the feature vectors. These filters act to extract

certain components, i.e., linear combinations or dimensions

of the stimulus, and possibly also the spike history. Next, a

nonlinear stage, which we will denote as gð,Þ, acts upon those

components to predict the associated firing rate.

The LN family of models makes two important assumptions

about the system’s input/output transformation. One is that the
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number of stimulus components or dimensions, K, that are rele-

vant to the neuron’s response is much less than the maximum

stimulus dimensionality, N. All methods thus necessarily include

a dimensionality reduction step whose goal is to find these rele-

vant K vectors that we will call features. They are denoted by fi,

each of size N with i = 1;.;K. The input/output transformation

can be written in terms of the fi as

rðtÞ= gðz1; z2;.; zK ; rðt0 < tÞÞ (Equation 4)

where

zi = ziðtÞhfi,sðt0 < tÞ (Equation 5)

is the projection of the stimulus on the ith feature, i.e., a compo-

nent-wise multiplication of the stimulus and the feature, followed

by summation. The time-invariant features fi are vectors that

span a low-dimensional subspace within the full stimulus space,

and the response of the system is approximated to depend only

on variations of the stimulus within that subspace. More compli-

cated projections could in principle be used, but the determina-

tion of such projections typically will require more data when the

zi are nonlinear functions of the stimulus.

The second assumption is that the nonlinear stage is taken to

be stationary in time, i.e., gð,Þ has time dependence only through



Box 4. Glossary of Symbols

d N, number of stimulus dimensions

d NX , number of spatial (or spectral) points in stimulus

d NT , number of time points in stimulus

d rðtÞ, predicted firing rate

d sðtÞ, stimulus presented at time t (N31 vector)

d fi, the i-th feature vector, i = 1;.;K (N31 vector)

d K, number of feature vectors in LN model

d zi, projection of stimulus onto i-th feature vector

d gðz1; / zKÞ, nonlinearity specified as a function of the stimulus projections zi
d tb, set of all times that the reduced stimulus belongs to bin b

d fsta, spike-triggered average (N31 vector)

d s, average stimulus (N31 vector)

d M, number of stimuli

d nðtÞ, number of spikes at time t

d nT , total number of spikes in time series

d Cp, underlying stimulus covariance (N3N matrix)

d Cs, spike-triggered stimulus covariance (STC) (N3N matrix)

d Cr, spike-triggered stimulus covariance conditioned on randomly shifted spike trains (N3N matrix)

d DC, matrix of covariance differences (N3N matrix)

d DCr, matrix of covariance differences with respect to randomly shifted spike trains (N3N matrix)

d li, the i-th eigenvalue of a matrix

d ui; vi, the i-th eigenvector of a matrix

d I, identity matrix

d fstc;i, the i-th STC eigenvector (N31 vector)

d bfsta and bfstc;i, decorrelated STA and STC feature vectors (N31 vectors)

d C�1p;L, pseudo-inverse of rank L of underlying stimulus covariance

d a;h;J, parameters of maximum noise entropy models that satisfy zeroth, first, and second order constraints, respectively

d r0, mean spike rate

d c, parameter of Generalized Linear Model (GLM)

d fglm, feature vector of GLM (N31 vector)

d c, spike history filter of single-neuron GLM

d k, regularization penalty in GLM

d wi, raised cosine basis function for spike history filter

d B, number of functions included in raised cosine basis

d t0, t1, t2, parameters of raised cosine basis

d cij, spike history filter, from neuron j to neuron i, of multi-neuron GLM

d L, likelihood function

d ~CðfÞ, spectral coherence at frequency f

d F, phase in whisk cycle
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the stimulus and the history of the neuron’s spiking response

that, like the stimulus, may be high dimensional. The nonlinearity

gð,Þ can be determined nonparametrically using the probabilistic

interpretation of Equation 1 given in Equation 2. We consider for

now only dependence on the stimulus and not on the history of

spiking, i.e., rðtÞ=gðz1; z2;.; zKÞ.
A general means to estimate the nonlinearity is to determine

the expectation of the response within each stimulus bin

(Chichilnisky, 2001). Given ziðtÞ, i.e., the projections of the

stimulus on the K relevant feature vectors (Equation 5), the

function gðz1;.; zKÞ can be computed by first discretizing

each of the K stimulus components into NB bins. The resolution

at which the nonlinearity is estimated is limited by the need to

ensure that each of the ðNBÞK bins contains multiple data points

for a statistically robust result. Then the measured response

rate, rðtÞ, is averaged over all the time points where the stim-
ulus belongs to each bin. For concreteness, suppose that

z1;b;.; zK;b is the point in the middle of the bin b, and the lower

and upper boundaries defining that bin are zl1;b;.; zlK;b and

zu1;b;.; zuK;b, respectively. The value of gðz1;b;.; zK;bÞ will be

set to

gðz1; z2;.; zKÞ= 1

Tb

X
tb

rðtbÞ; (Equation 6)

where the tb comprise the set of all times for which the stimulus

belongs to the bin b, i.e.,

zl1;b%z1ðtbÞ< zu1;b;.; zlK;b%zKðtbÞ< zuK;b; (Equation 7)

and Tb is the number of such samples in the data. Finally, the

value of gðz1;.; zKÞ for all points is found by interpolating be-

tween the values at the center points for each of the bins.
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Box 5. Nonlinearity for Neuronal Responses

We discussed two alternatives to compute the nonlinearity gð,Þ in the main text. Here we show that these are equivalent if the

response is binary. In the more general method (Equations 6 and 7), gð,Þ is set to the average response that corresponds to stimuli

in each specific bin, i.e.,

gðz1;b;.; zK;bÞ= 1

Tb

X
tb

rðtbÞ:

Assume that the response is binary and that each bin is sufficiently well sampled. Then average response is equal to the probability

of a spike given that the stimulus belongs to a certain bin b, i.e.,

gðz1;b;.; zK;bÞ=pðspike j s in bin bÞ=pðspike j z1;b;.; zK;bÞ:

With the use of Bayes’ rule, this becomes

gðz1;b;.; zK;bÞ=pðz1;b;.; zK;bjspikeÞpðspikeÞ
pðz1;b;.; zK;bÞ ;

and we recover Equation 9.
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Amore intuitive approach to find the nonlinear transformation,

gð,Þ, applies for the particular case of only binary responses, i.e.,
spike or no-spike per sample interval Dt. This is always possible

for spike trains sampled at a sufficiently high rate. Here we can

use Bayes’ rule, i.e.,

pðspike j sðtÞÞ=pðsðtÞ j spikeÞ pðspikeÞ
pðsðtÞÞ ; (Equation 8)

to determine an input/output relation in terms of the reduced

variables defined above (Equation 5):

gðz1; z2;.; zKÞ=pðspike j z1; z2;.; zKÞ

=
pðz1; z2;.; zK j spikeÞ pðspikeÞ

pðz1; z2;.; zKÞ : (Equation 9)

The probability distributions on the right-hand side can be found

from the data, i.e.,

d pðz1; z2;.; zK jspikeÞ, the spike-conditional distribution, is

the probability distribution of the stimuli, projected onto

the K features, conditioned on the occurrence of a spike

d pðz1; z2;.; zKÞ, the underlying stimulus distribution, is the

probability distribution of all stimuli in the experiment, pro-

jected on K stimulus features;

d pðspikeÞ, the mean firing rate over the entire stimulus pre-

sentation.

The underlying stimulus distribution and the spike-conditional

distribution are estimated by binning the K-dimensional stimulus

subspace along each of the feature vectors that span this space.

The Bayesian procedure (Equations 8 and 9) can be deduced as

a special case of the expectation rule (Equations 6 and 7) (Box 5).

It is often useful to examine the dependence of the input/

output relation gðz1; z2;.; zKÞ as a function of only one variable.
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This is referred to as the marginal gain and is found by inte-

grating over all other variables. For example, the marginal of z1
is given by

gðz1Þ=
Z

dz2/dzK gðz1; z2;.; zKÞ: (Equation 10)

Relation to Expansion Modeling

It is worthwhile to briefly contrast the LN approach with tradi-

tional nonlinear methods. If the neuron’s response does not

depend on its own history but only on the stimulus, the function

fð,Þ can be expanded as a Volterra series (Marmarelis and Naka,

1972; Marmarelis and Marmarelis, 1978), i.e.,

rðtÞ= fðsðt0 < tÞÞ=
Z

t0 < t

dt0 f1ðt0Þ sðt � t0Þ

+

Z
t0 < t

dt0
Z

t00 < t

dt00 f2ðt0; t00Þ sðt � t0Þ sðt � t00Þ+.;

(Equation 11)

where the functions f1ð,Þ, f2ð,Þ, etc. are weighting functions

called kernels, analogous to the coefficients of a Taylor series,

that are convolved with increasing powers of the stimulus. The

Volterra series approach has been applied to a few examples

in neuroscience, such as complex cells in primary vision (Szul-

borski and Palmer, 1990), limb position in walking in insects

(Vidal-Gadea and Belanger, 2009), and single-neuron firing

(Powers and Binder, 1996). However, the amount of data

needed to fit the kernels increases exponentially with the order

of the expansion. Furthermore, capturing realistic nonlinearities

including, e.g., saturation, typically requires expansions to

more than first or second order. The LN approach differs in

that no attempt is made to approximate the nonlinearity in
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successive orders. Rather, the nonlinearity is explicitly intro-

duced as a component of the model.

Nonparametric Models
An important goal of this type of approach is to drive the sys-

tem with a wide variety of inputs so that one explores, and

the model captures, as much richness in the response as

possible. One approach to this is to stimulate with white noise,

an input that samples a wide space of possibilities. However,

one should bear in mind that that this is not a natural input

for most sensory systems and might drive the system

in ways that rarely occur in nature or put it into an unusual

state of adaptation. While these possibilities raise interesting

issues for future study, the results of noise stimuli often give

strong clues as to the realm of structured stimuli that are

relevant.

For white noise, the value of the stimulus at one location or

time is unrelated to its value at any other location or time—that

is, there are no correlations in the input. This means that all

frequencies are represented in the stimulus up to a smoothing

cutoff, which might be determined by limitations on how the

stimulus is produced, or chosen using a reasonable guess at

the fastest possible response timescale of the system. An

example of such a stimulus is a visual checkerboard stimulus

with a total of NX pixels whose luminance values are each cho-

sen randomly from a Bernoulli distribution, i.e., a binary distribu-

tion with two choices, relative to an average intensity (Figure 3B).

The input that drives the cell may be viewed as a matrix of pixels

in space and time, denoted Iðx; tÞ.
To define a stimulus sample at time t, we select nT frames of

the input to form a matrix, i.e.,

�������������������! �������������������NT time points0@ Ið1; t � ðNT � 1ÞÞ / Ið1; tÞ
« 1 «

IðNX ; t � ðNT � 1ÞÞ / IðNX ; tÞ

1AhNx spatial positions

(Equation 12)

where ð/Þ labels the component. In general, wewish to consider

each stimulus sample as a vector in a high-dimensional space;

thus one reorganizes each stimulus sample from this matrix

format to an N=NX3NT (Equation 3) vector that indexes the

NT frames that go back in time by NTDt (Figure 3B):

sðtÞ=

0BBBBBBBB@

Ið1; t � ðNT � 1ÞÞ
«

IðNX ; t � ðNT � 1ÞÞ
«

Ið1; tÞ
«

IðNX ; tÞ

1CCCCCCCCA
: (Equation 13)

Spike-Triggered Average

The goal of the dimensionality reduction step is to identify a small

number of stimulus features that most strongly modulate the

neuron’s probability to fire. Dimensionality reduction can be un-

derstood geometrically by considering each presented stimulus

sðtÞ as a point in the N-dimensional space. Each location in this

space is associated with a spiking probability, or firing rate rðsÞ,
that is given by the nonlinearity evaluated at that location. A given

experiment will sample a cloud of points in this N-dimensional

space with a geometry that is set by the stimulus design (all

dots in Figure 2A). The spike-triggering stimuli are a smaller

cloud, or subset, of these stimuli (red dots in Figure 2A). Dimen-

sionality reduction seeks to find the stimulus subspace that cap-

tures the interesting geometrical structure of this spike-triggering

ensemble.

The simplest assumption is that a cell’s response ismodulated

by a single linear combination of the stimulus parameters, i.e.,

K equals one. The single most effective dimension is in general

the centroid of the points in this high-dimensional stimulus space

that are associated with a spike. This is the spike-triggered

average (STA), denoted fsta, the feature obtained by averaging

together the stimuli that precede spikes (de Boer and Kuyper,

1968; Podvigin et al., 1974; Eckhorn and Pöpel, 1981; Chi-

chilnisky, 2001), i.e.,

fsta =
1

nT

X
t

nðtÞðsðtÞ � sÞ; (Equation 14)

where nðtÞ is the number of spikes at time t, nT is the total number

of spikes, s is the average stimulus, i.e.,

s=
1

M

X
t

sðtÞ; (Equation 15)

andM is the total number of stimuli presented in the experiment.

As for the case of the stimuli (Figure 1B), the STA is organized as

a vector of lengthN that indexes theNT frames back in time from

t = 0 to t = ðNT � 1ÞDt (Equation 3), i.e.,

fsta =

0BBBBBBBB@

fsta½1�
«

fsta½NX �
«

fsta½2NX �
«

fsta½NT 3NX �

1CCCCCCCCA
: (Equation 16)

For aGaussian stimulus, the underlying distribution of stimulus

values projected onto the STA, pðzÞ = pðfsta,sðtÞÞ, is also

Gaussian. Often in experiments, however, the stimulus is binary,

so that the stimulus in each pixel or time point takes one of two

values. If the stimulus has a large number of components, the

central limit theorem ensures that these projections, as a sum

of many random values weighted by the feature vector compo-

nents, will have a Gaussian distribution. This distribution can

be either computed analytically from the statistics used to

construct the stimuli or accurately fit from data.

The nonlinearity can be estimated as the expectation of

the response (Equations 6 and 7) or, when the sampling

interval is sufficiently fine, with the use of Bayes’ rule

(Equations 8 and 9). The conditional histogram defining

pðzjspikeÞ=pðfsta, sðtÞjspikeÞ is generally not Gaussian and is

often under-sampled in the tails of the distributions. Thus,

when computing this ratio of histograms, it can be helpful to fit

the nonlinearity using a parametric model. If no functional form

is assumed, one can apply a smoothing spline to the conditional
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Figure 2. Schematic of Stimulus Samples
Plotted in Two Arbitrary Directions in
Stimulus Space
(A–C) Each stimulus is plotted as a single dot, its
projection into two dimensions. The red-dotted
stimuli precede spikes.
(A) The STA is a vector that points to the mean of
the spike-triggered stimuli (red dots).
(B) The covariance of the spike-triggered stimuli
captures the coordinates of variation of the cloud.
The covariance of the stimulus, i.e., the underlying
stimuluscovarianceCp (solid graycircle), formsone
set of vectors, and the covariance of the spike-
triggered stimuli, Cs, forms a second set. The two
dominant vectors comprising their difference,
i.e., DC = Cs - Cp, yield the dominant STC two

modes. The mode is significant only if its length is larger than the radius of the underlying stimulus covariance.
(C) The naively computed STA for the case of correlated or colored noise, where the variance of the underlying stimulus distribution is heterogeneous.
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distribution or reduce the number of bins used to estimate the

distributions from the data.

Calculating the STA for Retinal Ganglion Cells. We consider

the case of a binary checkerboard stimulus used to drive

spiking in retinal ganglion cells (Figure 3), the neurons that

output visual information from the retina. In this experiment,

the pixel values were chosen from a binary distribution

(Figure 3A). We applied the above formalism to the stimulus

set reorganized as three consecutive frames for a stimulus

dimension of N = 142 3 3 = 588. We varied the number of

bins used to discretize the stimulus to get reasonably smooth

features. The STA feature was computed according to Equa-

tions 14 and 15 for each of 53 retinal ganglion units; an example

is shown in Figure 4. The aim is to choose the stimulus dimen-

sionality, i.e.,NT3NX , so that any structure in the STA returns to

zero at the boundaries. Further, the dimension of the stimulus

should be sufficiently large to allow resolution of structure within

the STA yet small enough to allow sufficient averaging over the

effects of noise.

Here we tried bothNT = 3 time points with a larger patch size of

14314 pixels (Figures 4A and 4B) and NT = 6 frames with a

smaller patch of 10310 pixels (Figures 4C and 4D). The key

feature is a central spot of excitation that rises and falls over

three frames (Figures 4A and 4B). Thus the STA provides a

readily computed one-dimensional description of the cell; in

this case the feature is a transient spot of light. We return to

this point when we extend the description through a covariance

analysis.

For this dataset, the large number of frames and spikes per-

mits the underlying stimulus distribution to be well sampled

(Figure 4C). This distribution is consistent with a Gaussian,

as can be expected for a projection on any direction for a

white noise stimulus (Figures 4B and 4D). The coarse time

bins contained up to three spikes per bin, and thus we used

the expectation rule to calculate the nonlinearity (Equations

6 and 7). The observed nonlinearity is found to be monotonic

(Figure 4D).

Interpreting the STA. The STA procedure (Equations 14 and

15) has a strong theoretical basis. It has been shown (Chi-

chilnisky, 2001; Paninski, 2003) that fsta is an unbiased esti-

mator of the feature if the spike-triggering stimuli have a non-

zero mean when projected onto any vector, i.e., the cloud of
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spike-triggering stimuli is offset from the origin, and if the distri-

bution of spike-triggering stimuli has finite variance. In the limit

of infinite amounts of data and an elliptical noise distribution

(Paninski, 2003), the STA feature is guaranteed to correctly

recover the dependence of the neuron’s response on this single

feature. Geometrically, the vector fsta points from the origin

exactly to the center of the cloud for a sufficiently large dataset.

This is independent of the nonlinearity of the cell’s response.

However, this theorem does not guarantee that if the cell’s

response depends only on the projection of the stimulus onto

one vector, that vector must be fsta. For example, the spike-

triggering cloud of stimuli points might be symmetric, such

that the average lies at the origin, but the shape is nonetheless

very different from the cloud consisting of all stimuli, i.e., the

underlying stimulus distribution pðfsta,sðtÞÞ. The spike-trig-

gered covariance (STC), discussed next, makes use of this

additional information.

Spike-Triggered Covariance

While generally the STA is the best solution to reduce the stim-

ulus to a single dimension, the probability of a spike may be

modulated along more than one direction in a stimulus space,

as has been shown for many types of neurons across different

sensory systems (Brenner et al., 2000; Fairhall et al., 2006;

Slee et al., 2005; Fox et al., 2010; Maravall et al., 2007). Further,

there may be a symmetry in the response, such as sensitivity to

both ON or OFF visual inputs for a retinal ganglion cell, or invari-

ance to phase in the whisk cycle for a vibrissa cortical cell, that

causes the fsta to be close to zero. Thus our next step is to

generalize the notion of ‘‘feature’’ to a K-dimensional model of

the form:

pðspike j sðtÞÞ=pðz1; z2;.; zKÞ; (Equation 17)

where, as a reminder, zi = ziðtÞ=fi,sðtÞ is the projection of the

stimulus at time t on the i-th identified feature vector fi. To find

theseK-relevant dimensions, we will make use of the second-or-

der statistics of the spike-triggering stimuli.

Let us first consider the second-order statistics of the stimulus

itself. These are captured by its covariance matrix, also referred

to as the underlying stimulus covariance, i.e.,

Cp =
1

M� 1

X
t

ðsðtÞ � sÞðsðtÞ � sÞu; (Equation 18)
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Figure 3. Spike Responses from Salamander Retinal Ganglion Cell 3 for a Visual Checkerboard Stimulus, Used to Illustrate theMethods with
a ‘‘White Noise’’ Stimulus
(A) Each pixel in the checkerboard was refreshed each Dt = 33.33 ms with a random value, and the spikes were recorded within the same interval.
(B) We constructed the covariance matrix of the stimulus (Equation 18) and plotted its spectrum (black).The eigenvalues are all close to the variance of a single
pixel, s2 = 1, for the checkerboard stimulus. We compared this spectrum to that expected theoretically for the same-sized randommatrix (Mar�cenko and Pastur,
1967) with signal-to-noise parameter g = n=N (number of samples divided by number of dimensions).
(C) The hallmark of white noise is that there is no structure in the stimulus, and indeed the eigenvectors of the stimulus covariance matrix (Equation 18) that
correspond to the largest eigenvalues are seen to contain no spatial or temporal structure.
Methods: The dataset consists of 53 time series of spike arrival times simultaneously recorded from 53 retinal ganglion cells of retinae that had been isolated
from larval tiger salamander (Ambystoma tigrinum) and laid upon a square array of planar electrodes (Segev et al., 2004). The pitch of the array was 30 mm and
the spiking output of each cell, which includes spikes in both the soma and the axon, was observed on several electrodes. Using a template distributed across
multiple electrodes enables one to accurately identify spikes as arising from a single retinal ganglion cell. Visual stimuli were a 402 = 1600 square pixel array
that was displayed on a cathode ray tube monitor at a frame rate of 30 Hz (Segev et al., 2006). Each pixel was randomly selected to be bright or dark relative
to a mean value on each successive frame, i.e., the amplitude of each pixel was distributed bimodally and was spectrally white up to the Nyquist frequency
of 15 Hz. The image from the monitor was conjugate with the plane of the retina and the magnification was such that visual space was divided into
50 mm squares on the retina, which allowed many squares to fit inside the spatial receptive field of each ganglion cell, with a cut-off of 200 cm�1 in spatial
frequency. For each cell, we extracted either the 142 = 196 or the 102 = 100 pixel region with modulated activity; these give rise to 2196 or 2100 potential
patterns, respectively. Each time series was 60–120 min long and contained between 1,000 and 10,000 spikes, but sampled a tiny fraction of the potential
patterns.
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where u means transpose and we assume averaging over M

stimulus samples indexed by t. The covariance matrix can be

diagonalized into its eigenvalues, denoted li, and corresponding

eigenvectors, denoted vi, as in principal component analysis

(PCA), i.e.,

Cp =
XK
i =1

liviv
u
i ; (Equation 19)

where the eigenvectors ofCp are space-time patterns in the pre-

sent case. The eigenvectors define a new basis-set to represent
directions in stimulus space that are ordered according to the

variance of the stimulus in that direction, which is given by the

corresponding eigenvalue.

For a Gaussian white noise stimulus, all eigenvalues of the

covariance of the underlying stimulus distribution are equal

and Cp is a diagonal matrix with Cp = s2I, where I is the identity

matrix. The constant s2 is the variance of the distribution of pixel

amplitudes. In practice, the use of a finite amount of data to

compute the underlying stimulus covariance (Equation 19) af-

fects the spectrum slightly, but in a predictable way; the spec-

trum of eigenvalues of the stimulus covariance matrix is close
Neuron 91, July 20, 2016 231



A

B

C

D

stimulus

Figure 4. The Spike-Triggered Average, fsta, for the Responses of
Retinal Ganglion Cell 3
(A and B) We considered two stimulus representations. In (A), we show a short
sequence where we retain three stimulus frames in the past ðNT = 3Þ, and
the frame was NX = 142 = 196 pixels. We chose the optimal lag for which
the cell’s response is maximally modulated by the stimulus. In (B), we show
a long sequence where NT = 6, but the frame was cropped such that
NX =10310= 100. We chose the first six frames into the past.
(C) The underlying stimulus distribution computed for both representations, (A)
and (B), in solid and dashed curves, respectively.
(D) The expectation procedure (Equations 6 and 7) was used to obtain the
input/output nonlinearity for both representations, (A) and (B), in solid and
dashed curves, respectively.
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to constant (black dots in Figure 3B), in agreement with the

analytical spectrum calculated for the same stimulus dimension

and same number of samples (red dots in Figure 3B). Although

we could have computed the underlying stimulus distribution

without finite size limitations, it is instructive to see this effect.

The dominant eigenvectors, shown in a space-time format,

appear featureless, as they should (Figure 3C).

Our goal is to find the directions in stimulus space in which the

variances of the spike-triggering stimuli differ relative to the un-

derlying stimulus distribution of stimuli. These can be found

through the covariance difference matrix (de Ruyter Van Steven-

inck and Bialek, 1988; Agüera y Arcas and Fairhall, 2003; Bialek

and van Steveninck, 2005; Aljadeff et al., 2013), denoted DC,

where
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DC=Cs �Cp; (Equation 20)

and the STC matrix Cs is computed relative to the spike-trig-

gered average (Equations 14 and 15) and given by

Cs =
1

nT � 1

X
t

nðtÞðsðtÞ � fstaÞðsðtÞ � fstaÞu: (Equation 21)

The underlying stimulus covariance matrix Cp is given by Equa-

tion 18, and we recall that nT is the total number of spikes.

The matrix DC (Equation 20) may be expanded in terms of its

eigenvalues, li, and eigenvectors, fstc;i, i.e.,

DC=
XN
i = 1

lifstc;if
u
stc;i: (Equation 22)

As DC is a symmetric matrix, the eigenvalues are real numbers

and the corresponding eigenvectors form a orthogonal normal-

ized basis that spans the N-dimensional stimulus space; thus

fstc;i,fstc;j = 0 for isj and fstc;i,fstc;i = 1. Positive eigenvalues

correspond to directions in the stimulus space along which

the variance of the spike-triggered distribution is larger than

the underlying stimulus distribution, and negative eigenvalues

correspond to smaller variance. This analysis is illustrated in

two dimensions in Figure 2B. The dominant STC vectors,

STC modes 1 and 2, are found by subtracting the eigenvec-

tors of the underlying stimulus covariance matrix (gray area

Figure 2B) from those of the STC matrix (blue area in Figure 2B).

Practical Considerations in Computing the STC. Some eigen-

values will emerge from the background simply because of
ffiffiffiffi
N
p

noise from the finite number of samples. To determine which K

of the N eigenvectors of DC are significant for the cell’s input/

output transformations, the eigenvalues li are compared to a

null distribution of eigenvalues obtained at random from the

same stimulus. We compute, for a large number of repetitions,

a STC matrix using randomly chosen spike times, tr, to select

the same number of stimulus samples at random, i.e.,

Cr =
1

nT � 1

X
tr

nðtrÞðsðtrÞ � fstaÞðsðtrÞ � fstaÞu: (Equation 23)

The corresponding matrix of covariance differences

DCr =Cr � Cp and its eigenvalues are computed for each

random choice. The eigenvalues of all matrices DCr form a

so-called ‘‘null distribution.’’ Eigenvalues of DC (Equation 20)

computed from the real spike train that lie outside the desired

confidence interval of the null distribution are said to be signifi-

cant. Note that one might wish to preserve any structure

that results from temporal correlations in the spike train, e.g.,

a tendency to spike in bursts. If such structure exists, one

can compute the matrix Cr (Equation 23) using spike trains

shifted by a random time lag with periodic boundary conditions

such that the end of the spike train is wrapped around to the

beginning.

The STC features, fstc;i, are the corresponding significant ei-

genvectors of the covariance difference matrix. If there is a

non-zero STA, fsta will tend to be the most informative direction

in stimulus space. Thus a higher-dimensional model of the
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stimuli that lead to spiking includes the STA and the significant

STC features. Examination of these features will give insight

into the underlying feature selectivity of the neurons. However,

for the purpose of predicting spikes, it is convenient to work in

a basis where all features are orthogonal. As the STC feature

vectors are not generally orthogonal to the STA, one should proj-

ect out the STA from each eigenvector used, recalling that the

STC features remain orthogonal to one another. The new fea-

tures are denoted as ft
stc;i where

ft
stc;i =fstc;i �

fstc;i,fsta

kfsta k 2
fsta; i = 1;.K � 1: (Equation 24)

It is convenient to normalize these feature vectors such that the

norm of each of them is equal to one, i.e., ft
stc;i,f

t
stc;i = 1.

For the case of white noise, where the variance of the stimulus

is equal along every direction, the eigenvalues of the underlying

stimulus covariance matrix, Cp, are essentially all equal, and the

STC features can be computed directly from Cs. However, if the

variance along some directions of the stimulus is larger than

others, as is the case for correlated noise, the significance

threshold for each eigenvalue of Cs is different. In this case, sub-

tracting the underlying stimulus covariance allows one to test

whether the variance of the spike-triggered distribution is

different from that of the underlying stimulus distribution along

each direction.

The STA and the set of orthogonalized STC vectors are then

used to calculate a multidimensional nonlinear function by

computing the joint histogram of the K values of the spike-trig-

gering stimuli projected onto the feature vectors and applying

either the expectation (Equations 6 and 7) or Bayesian (Equa-

tions 8 and 9) procedure. The function pðspike j sðtÞÞ acts as a

multidimensional look-up table to determine the spike rate of

the cell in terms of the overlap for the stimulus with each of the

feature vectors.

Calculating the STC for Retinal Ganglion Cells. The STC fea-

tures were computed according to Equation 20 for a set of retinal

ganglion units; results for the same representative unit used for

the STA features (Figures 4 and 5A) are shown in Figure 5. There

are four STC features (Figure 5A) that are statistically significant

(Figure 5B). The first STC feature appears as a spatial bump with

a 0.93 overlap with the STA feature. Thus the dominant STC

stimulus dimension is oriented in almost the same direction as

the STA. The second STC feature is spatially bimodal, and the

third and fourth STC features have higher-frequency spatial os-

cillations; all of these second-order features are nearly orthog-

onal to the STA and indicate space-time patterns beyond a

‘‘bump’’ that will drive the neuron to spike.

We complete the model by calculating the nonlinearity

(Equations 6 and 7). We first project out the component along

the STA feature from the STC features (Equation 24) to find

the orthogonal components. The first STC feature has such a

high overlap with the STA feature that the projection essentially

leaves only noise. The second STC feature is essentially un-

changed by the projection. As there are too few spikes to

consider fitting more than a two-dimensional nonlinearity, the

nonlinearity is computed as a function of two variables, i.e.,

pðspike jfsta,s;f
t
stc;2,sÞ (Figure 5C). The one-dimensional non-
linearities for the STA and orthogonal STC mode can be recov-

ered from this function by projecting along the respective axes

(Equation 10) (Figure 5C). The corresponding nonlinearity for

the STC mode is bowl-shaped, increasing at large negative as

well as positive values of the overlap of the stimulus with ft
stc;2.

Such a nonlinearity can arise, for example, if the neuron is sensi-

tive to a feature independent of its sign.

Interpreting the STC. For a sufficiently large dataset, the signif-

icant STC features are guaranteed to span the entire subspace

where the variance of the spike-triggered stimulus ensemble is

not equal to the variance of the underlying stimulus distribution

(Paninski, 2003). In contrast to the corresponding result for the

STA feature, for the STC feature this guarantee only holds

when the stimulus distribution is Gaussian or under certain re-

strictions on the form of the nonlinearity (Paninski, 2003). Even

when it is difficult to obtain an accurate model for the nonline-

arity, the relevant STC features help to develop an understanding

of the processing the system performs on its inputs. For

example, in the retina, STC analysis can reveal potentially sepa-

rate ON and OFF inputs to an ON/OFF retinal ganglion cell (Fair-

hall et al., 2006; Gollisch and Meister, 2008) and can capture

spatial or temporal phase invariance, such as that exhibited by

complex cells, by spanning the stimulus space with two comple-

mentary filters that can add in quadrature (Touryan et al., 2002;

Fairhall et al., 2006; Rust et al., 2005; Schwartz et al., 2006; Mar-

avall et al., 2007).

The spectral decomposition of the symmetric matrix DC al-

ways returns orthogonal components. Thus the STC features

cannot, in general, be interpreted as stimulus subunits that inde-

pendently modulate the cell’s response (McFarland et al., 2013).

Instead, the features span a basis that includes relevant stimulus

components. Finding the appropriate rotations from the orthog-

onal feature vectors to stimulus components can strengthen the

potential link between the functional model and underlying prop-

erties of the neural circuit, but requires additional assumptions.

This is, in general, a difficult problem (Hong et al., 2008; Kaardal

et al., 2013; Ramirez et al., 2014).

Natural Stimuli and Correlations

Our development so far has focused on methods that work

well for white noise inputs, yet neurons in intermediate and

late stages of sensory processing—for example, areas V2 or

V4 in the visual pathway—are often not responsive to such

stimuli. Rather, robust responses from these cells often require

drive by highly structured stimuli, such as correlated moving

stimuli that are typical of the statistics of the natural sensory

environment (Simoncelli and Olshausen, 2001). In this case,

the methods discussed above may be inappropriate or at

the very least can be expected to yield suboptimal models.

Therefore, much attention has been given to developing

methods that are appropriate to analyzing neuronal responses

to natural stimuli or stimuli with statistics that match those of

the natural sensory environment (David and Gallant, 2005;

Sharpee, 2013).

Another facet of coding natural scene statistics is that animals

self-modulate the structure of incoming stimuli through active

sensing (Nelson and MacIver, 2006; Kleinfeld et al., 2006;

Schroeder et al., 2010; Prescott et al., 2011). While one could,

for example, sample the natural scene statistics of a forest
Neuron 91, July 20, 2016 233
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Figure 5. Spike-Thriggered Covariance
Features for the Response of Retinal
Ganglion Cell 3
(A) The two significant STC feature vectors, in
addition to the STA feature for comparison, using
the stimulus representation with NT = 6 and
NX = 100. The feature vector fstc;1 has 0.93 overlap
with fsta, while fstc;2 through fstc;4 have only a
0.20, 0.11, and a 0.05 overlap, respectively.
(B) The significance of each candidate STC
feature, i.e., eigenvectors of DC (Equation 20),
were determined by comparing the corresponding
eigenvalue (red and black) to the null distribution
(gray shaded area). We used 1,000 repetitions of
the calculation for randomized spike trains, cor-
responding to a confidence interval of 0.001.
(C) The nonlinearity in the space spanned by the
STA and the second orthogonalized STC feature,
after the STA feature was projected out (Equation
24),ft

stc;2, completes theconstructionof thespiking
model. The nonlinearity is found by the expectation
procedure (Equations 6and7). Themarginalsof this
distribution give nonlinearities with respect to the
STA (top) and second STC features (right) alone.
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environment by computing the spatial and temporal correlations

recorded by a stationary video camera (Ruderman and Bialek,

1994; van Hateren and van der Schaaf, 1998), an animal navi-

gating through the forest experiences very different statistics

because of its bodymotion (Lee andKalmus, 1980) and saccadic

eye movements (Rao et al., 2002; Nandy and Tjan, 2012). It is

desirable to characterize the response properties of groups of

neurons to the type of inputs driving them in a scenario that is

as close to real as possible, but as we will see below, analysis

of responses to such stimuli presents considerable challenges.

Calculating the STC with Correlated Stimuli. Our calculation of

features so far has been limited to the case of white noise stimuli

with a variance that is equal, or nearly equal, in all stimulus di-

mensions. This led to a covariance matrix for these stimuli, Cp,

whose eigenvalue spectrumwas nearly flat (Figure 3B). Yet stim-

uli in the natural sensory environment have statistics that differ

markedly, with spatiotemporal correlations and non-Gaussian

structure (Ruderman and Bialek, 1994; Simoncelli and Olshau-

sen, 2001). While the complex higher-order moments of natural

inputs may be relevant for neural responses and will not be

captured by first- and second-order moments (see, for example,

Pasupathy and Connor, 2002), we can still address the issue of

correlation. A correlated stimulus has an underlying stimulus

covariance matrix, Cp, that contains significant off-diagonal

components and whose eigenvalue spectrum is far from flat.

The STA feature and the eigenvectors of DC, i.e., the STC

features, will be affected by the correlations within the stimulus

(Bialek and van Steveninck, 2005) (compare Figure 2A and

Figure 2C). The removal of these correlations is a process

referred to as decorrelation or whitening. This may be applied

to the case of so-called colored noise, where the power in

different frequency bands is not equal, as it is in white noise. In

this case, whitening corresponds to equalizing the power at

each frequency. In the time domain, this corresponds to dividing

by the underlying stimulus covariance matrix. Thus one can

whiten the stimulus itself by dividing by the underlying stimulus

covariance matrix (Theunissen et al., 2001; Schwartz et al.,

2006), i.e.,

bsðtÞ=C�
1
2

p sðtÞ; (Equation 25)

and then proceed with the STA and STC analysis as defined by

Equations 14, 15, 18, and 20 to 22 but with sðtÞ replaced by bsðtÞ.
The matrix C�1=2p is defined by

C�
1
2

p =
XK
i = 1

l
�1

2
i viv

u
i : (Equation 26)

where C�1=2p has the same eigenvectors as Cp (Equation 19) but

the eigenvalues are the square root of the inverted eigenvalues.

Alternatively, the feature vectors may be calculated and the

effect of correlations removed by dividing the feature vectors

by the underlying stimulus covariance matrix (Equation 18). We

denote the whitened features as bfsta and bfstc;i, where

bfsta =C�1p fsta; (Equation 27)

bfstc;i =C�1p fstc;i; i = 1;.;K � 1; (Equation 28)
and fsta and fstc;i are the estimates defined by Equations 14 and

22, respectively. As for the case of the matrix C�1=2p , the matrix

C�1p has the same eigenvectors as Cp (Equation 19), but now

the eigenvalues are simply inverted, i.e.,

C�1p =
XK
i = 1

l�1i viv
u
i : (Equation 29)

Recall that Cp and thus C�1p are close to the identity matrix for

white noise. The decorrelation procedure is also applied when

producing the null eigenvalue distribution used to determine

the significance of the STC features (Equation 23).

Regularization of the Inverse Covariance Matrix. The whitening

procedure is usually numerically unstable, as it tends to amplify

noise (David et al., 2004; Sharpee et al., 2008). This is because

decorrelation attempts to equalize the variance in all directions.

Yet the eigenvector decomposition of the underlying stimulus

covariance matrix, Cp, includes directions in the stimulus space

that have very low variance, i.e., small values of li that are also

likely to be poorly sampled. Unchecked, this leads to dividing

the feature vectors or stimulus by small but noisy eigenvalues

that amplify the noise in these components. This is especially a

problem when there is a big difference between the large and

small eigenvalues of Cp. In this case, it is best to simply remove

stimulus components with small variance. This is done by replac-

ingC�1p with the pseudoinverse, amatrix in which the l�1i is set to

0 for li below a certain threshold, i.e., stimulus components

along small eigenvalue modes have simply been discarded.

The number of remaining non-zero l�1i is called the order of

the pseudoinverse (Penrose, 1955).

The pseudoinverse of order L and pseudo square-root inverse

of order L, with the eigenvalues li arranged in decreasing order

and L<N, are respectively defined as:

C
�1

2
p;L =

X
i =1

L

l
�1

2
i viv

u
i : (Equation 30)

C�1p;L =
X
i =1

L

l�1i viv
u
i (Equation 31)

Multiplying by the pseudoinverse is equivalent to projecting out

components of the stimulus along directions vi that correspond

to small li before multiplying by the inverse.

The order of the pseudoinverse, L, is a regularization param-

eter that allows one to choose a cutoff for directions in stimulus

space for which the variance is considered to be too small to

accurately estimate the component of the feature in that direc-

tion. If we are able to construct a full spiking model of features

and nonlinearity, we may choose the value of L as the one that

yields a model that gives the best predictions for a test dataset;

this is the course we followed.

STA and Covariance from Thalamic Spiking during Whisking in

Rat. Rat whisking provides an excellent example of active

sensing in that spiking is tied to the motion of the vibrissae,

i.e., long hairs that the rat sweeps through space as it interro-

gates the region about its head (Figure 6A). Whisking consists

of an underlying 6–10 Hz rhythm whose overall maximum ampli-

tude, or envelope, and local mean, or set-point, change slowly in
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Figure 6. Spike Responses from Thalamic Cell 57 in Response to Whisking in Air without Contact
(A) The coordinate systems used to describe the whisk cycle. The left is absolute angle, qwhisk, and the right is phase, FðtÞ, which are related by
qwhiskðtÞ= qprotract � qampð1� cosðFðtÞÞÞ (Deschênes et al., 2016).
(B) The spike rate as a function of phase in the whisk cycle. The peak defines the preferred phase Fo.
(C) A typical whisk, the stimulus, and spikes in the vibrissa area of ventral posterior medial thalamus. We show raw whisking data and, as a check, the data after
the slowly varying components qprotract and qamp and the rapidly varying component FðtÞ were found by the Hilbert transform and the whisk reconstructed.
(D) Reconstructed whisk, leaving out slowly varying mid-point qprotract � qamp. The self-motion stimulus is taken as the vibrissa position up to 300 ms in the past
with Dt = 2 ms time bins, so that NX = 1, NT = 150, and thus N= 150.
(E) The spectrum of the covariance matrix of the self-motion (Equation 18). Note the highly structured dominant modes.

(legend continued on next page)
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time. It is often convenient to characterize vibrissa position in

terms of phase in the whisk cycle as opposed to absolute angle

(Curtis and Kleinfeld, 2009) (Figure 6A), as many neurons have a

preferred phase for spiking (Figure 6B). In our dataset, we

include records of spiking from seven neurons along the primary

sensory pathway in thalamus along with vibrissa position as the

rats whisked in air (Moore et al., 2015b) (Figure 6C); free whisking

in air is a means to study the reafferent signal alone, as a touch-

based sensory input must be decoded relative to the reafferent

signal of vibrissa position (Kleinfeld and Deschênes, 2011).

To ensure that the mean firing rate is stationary over the time

course of each behavioral epoch, we decomposed the whisking

stimulus by computing the local phase and envelope using a

Hilbert transform (Hill et al., 2011a) and removing shifts in the

set-point of the motion (cf. green and blue traces of the recon-

struction in Figure 6C). We then reconstructed the stimulus as

changes in angle with respect to the set-point (Figure 6D). To

analyze the spiking data relative to the reconstructed stimulus,

we choose a 300 ms window with a 2 ms sampling period so

that the stimulus, sðtÞ, is a NT = 150 dimension vector in time.

Here, becausewe consider only a single vibrissa, the dimensions

of the stimulus are NX = 1 and N=NT . The underlying stimulus

covariance (Equation 19) has eigenvalues that fall off dramati-

cally by a few orders of magnitude (Figure 6E), in contrast with

the nearly flat spectrum of white noise (Figure 3B). The dominant

eigenvectors appear as sines and cosines at the whisking fre-

quency (modes 1 and 2 in Figure 6E), with higher-order modes

corresponding to variations in amplitude (modes 3 to 6) and

higher harmonics (mode 7 and 8). The power in modes higher

than about 60 is negligible. This spectral decomposition illus-

trates the high degree of correlation of the stimulus and the

considerable variation in the sampling of each stimulus dimen-

sion, seen from the amplitude fall-off in high frequencies. Lastly,

we observed that the inter-whisk interval shows a peak at the

whisking frequency (Figure 6F), consistent with the form of the

autocorrelation (Figure 6G). However, despite the presence of

a strong rhythmic component in the stimulus, the inter-spike in-

terval for a representative neuron appears largely exponential

(Figure 6F).

We first consider the case of the feature vectors without whit-

ening. We computed the STA feature (Equation 14) (Figure 7A)

and the three significant STC features (Equation 20) (Figures

7A and 7B) for neurons in vibrissa thalamus. The STA feature ap-

pears as a decaying sine wave (Figure 7A), and the dominant

STC feature appears as a phase-shifted version of the fsta

(gray, Figure 7A). The overlap of fstc;1 with fsta is small, i.e.,

�0.06. Thus the dominant unwhitened STC feature could be

safely orthogonalized relative to the unwhitened STA feature
(F) The inter-whisk and inter-spike intervals.
(G) The autocorrelation of whisking. Black is over all trials and gray is only over l
Methods: The whisking dataset is used to illustrate our methods with a stimulus tha
times, each recorded from a single unit in the vibrissa region of ventral posteriorme
were motivated to whisk by the smell of their home cage. Spiking data were obta
method ensures that the spiking events originate from a single cell. The anterior
taneously using high-speed videography. Each time series contained 4–14 trials,
correlation time of the whisking, which serves as the stimulus for encoding by ne
response was strongly modulated by the dynamics of vibrissa motion only when th
tested their predictions only for periods when qampR10+.
(Equation 24) and used to construct a nonlinear input/output

surface for this cell (not shown).

We repeated the above analysis with a whitened stimulus.

The stimulus was decorrelated using an order L pseudoinverse

(Equation 29), where L was varied between 2 and 40. For each

value of L we computed a predictive model, as described later,

andchose thevalueofL for thewhiteningprocedure thatprovided

the best predictability. We show the decorrelated (Equation 27)

and regularized (Equation 31) STA feature (Figure 7A) and the

two significant STC features (Figures 7A and 7B). Here, the whit-

ened STA and both whitened STC features are fairly similar to

those for the unwhitened case, even though the analysis was

restricted to a L-dimensional subspace spanned by the leading

eigenvalues of DC (Equation 20) after whitening. We next con-

structed the nonlinear input/output surface for the cell (Equation

9) using the whitened STA feature vector and the orthogonalized

(Equation 24) first whitened STC feature vector (Figure 7C). The

nonlinearity with respect to the STA feature alone appears as a

saturating curve.

Before we leave the approach of nonparametric models, for

which the features and nonlinearity are determined only by

data, we note the method of maximally informative dimensions

(Sharpee et al., 2003, 2004; Rowekamp and Sharpee, 2011) as

an alternative means to find spike-triggering features and an

arbitrary nonlinearity (Box 6). Rather than using a geometrical

approach, this method uses the mutual information between the

stimulus and the spike as a measure of the quality of the feature.

Models with Constrained Nonlinearities
Theability tofindnonparametric stimulus featuresandnonlinearity

canbe severely constrainedby the size of the dataset. Aswe have

seen,with realistic amounts of data, suchmodels are often under-

sampled, particularly if one wants to incorporate dependence on

multiple features and other factors such as the history of spiking

and, potentially, network effects. The methods we will discuss

next instead make specific assumptions about the form of the

nonlinearity that simplify certain aspects of the fitting problem.

Fixing the formof thenonlinearity allowsone toposea so-called

‘‘noisemodel’’ for the responsesgiven thestimulusand thechoice

of model parameters. One then estimates the parameters of the

model that best account for the data through an approach known

as maximum likelihood. The likelihood is the probability of the

observed data given a choice of model parameters, understood

as a function of those parameters. Maximization of the likelihood

function provides an estimate of the model parameters that best

accounts for the data. Thismaximization can be achieved reliably

when the likelihood is convex. A convex function, onewhose cur-

vature does not change sign, has no local minima ormaxima, and
arge amplitude whisks. Note the narrow band nature of this dataset.
t contains strong temporal correlations. It consists of seven sets of spike arrival
dial thalamus of awake, head-restrained rats (Moore et al., 2015b). The animals
ined with quartz pipets using juxtacellular recording (Moore et al., 2015a); this
-to-posterior angle of the vibrissae as a function of time was recorded simul-
each 10 s in length, with between 1,300 and 3,500 spikes per time series. The
urons in thalamus, is nominally 0.2 s (Hill et al., 2011a). We found that the cells’
e amplitude qamp was relatively high; therefore we constructed the models and
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Figure 7. The Spike-Triggered Average and
Spike-Triggered Covariance Feature
Vectors for the Response of Thalamic Cell
57 in the Rat Vibrissa System
(A) The STA feature and the same feature
computed for the whitened stimulus (Equation 30
with L = 18), along with the leading STC features
calculated with and without whitening (Equation
30 with L = 18). The dashed curve is after projec-
ting out the STA vector from STC mode 1.
(B) Comparing the eigenvalues of DC, without
whitening, to the null eigenvalue distribution
computed from randomly shifted spike trains
demonstrates the statistical significance of the
leading STC eigenvectors; red denotes significant
eigenvectors and black not significant. For the
case ofDCwith whitening, regularization led to L =
18 eigenvectors, of which two were significant.
(C) A two-dimensional model of the nonlinearity
for bfsta and the leading STC feature, bfstc;1, both
computed after whitening. We further plot the
two marginals; dashed lines correspond to rare
events.
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thusmaximization canbeperformedusing local gradient informa-

tion and ascending the likelihood function to a unique peak. There

are many convex optimization algorithms available, for instance

the conjugate gradient ascent algorithm (Malouf, 2002).
238 Neuron 91, July 20, 2016
An important consideration in fitting

these models is that, even in cases for

which the solution is unique as a result

of convexity, the model may be account-

ing for variation that is specific to the

portion of the data used for the fit. This

is a phenomenon known as overfitting,

and it manifests as a decrease in predict-

ability of the model on novel datasets

relative to the quality of the fit obtained

with the training data. To ensure that

the model is not simply capturing noise

terms specific to the training set, a com-

parison between performance on test

and training data is, for all approaches,

a critical validation step. To minimize

overfitting, one can increase the toler-

ance of the fitting function such that the

gradient ascent stops when the model

parameters have not yet reached the

global minimum. Alternatively, one can

partition the data into different random

choices of training and test sets,

known as jack-knife resampling, and

run the optimization repeatedly on these

different partitions. The resulting param-

eters may then be averaged over the rep-

etitions; the variability of the estimates

may also be quantified.

Maximum Noise Entropy Method

A principled way to specify a probabi-

listic model of the input-output trans-

formation, fð,Þ, is by searching for a
conditional probability distribution of stimuli and responses,

pðspike j sÞ. This can be done under the assumption that the

variability in the response is described by a maximum entropy

distribution, i.e., a distribution that is the least structured given



Box 6. Maximally Informative Dimensions

This method uses the mutual information between the stimulus and the spike as a measure of the quality of the feature (Sharpee

et al., 2003, 2004; Rowekamp and Sharpee, 2011). An ‘‘informative’’ dimension is one in which, when a spike occurs, the spread of

possible stimulus values along that dimension, as quantified by the entropy, is as small as possible. Thus, the MID approach im-

plements a search to locate a feature that minimizes this entropy or, equivalently, maximizes the mutual information between stim-

ulus and spikes. To understand this approach, we return to the definition of the nonlinearity based on the Bayesian procedure

(Equations 8 and 9), which we will recall just for a single feature and the corresponding projection of the stimulus, i.e., z1 =f1,s,
so that

rðtÞ � pðz1jspikeÞ
pðz1Þ :

One wishes to find a feature, f1, such that this function varies strongly with z1. If it is constant, the observation of a spike gives

no information about the presence of the feature in the input, and conversely that feature is not predictive of the occurrence of a

spike. The mutual information between spike and stimulus will be maximized when the two distributions, pðz1 j spikeÞ and pðz1Þ,
are as different as possible. One method for evaluating the difference between two probability distributions is the Kullback-Lei-

bler divergence, defined as DKLðp;qÞ=
R
dz pðzÞlog½pðzÞ=qðzÞ�, where pðzÞ and qðzÞ are probability distributions. Here, maxi-

mizing mutual information is equivalent to searching for the direction that maximizes the divergence between the distribution

of all stimuli, projected onto f1, and the spike-conditional distribution of these projections. Unlike the STC procedure, this

approach requires no assumptions about the structure of the stimulus space and has been applied to derive features from nat-

ural images. It can also be extended to multiple features. In general, however, this method is computationally expensive and

prone to local minima, so we do not implement this analysis here; the code can be downloaded from http://cnl-t.salk.edu/

Code/.
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stimulus and constraints set by measures on the data. In

this approach, called the maximum noise entropy (MNE)

method, we compute moments of the measured spiking

response with respect to the stimulus and equate these with

the same moments calculated with the joint probability distri-

bution from the model (Table 1). A full list of moments

across the N dimensions of the stimulus space contains

complete information about the neuronal response. However,

as in other approaches, it is typically difficult to go beyond

two moments.

The functional form of the MNE joint distribution, with con-

straints to second order (Globerson et al., 2009; Fitzgerald

et al., 2011a, 2011b) is given by

pðspike j sÞ= 1

1+ expfa+h,s+ suJsg: (Equation 32)

The parameters of the model are a, a scalar needed to satisfy

the zeroth-order constraint; h, an N-component vector needed

to satisfy the first-order constraints; and J, an N3N symmetric

matrix needed to satisfy the second-order constraints. The pa-
Table 1. Moments for the MNE Models

Moment 0 1

Element scalar [i]-th component of a

Symbol hr(t)i hr(t)s[i](t)i
Data nT/M

1
M

P
tnðtÞs½i�ðtÞ

Model p(spike) pðspikeÞPts
s½i�ðtsÞpðs

nT is the total number of spikes and ts are the spike times.
rameters of the distribution (Equation 32) that best fit the data,

i.e., have highest likelihood, are found via a gradient ascent

algorithm. For each set of parameter values, the likelihood

function is computed and the parameters are modified such

that the likelihood function will increase in the next step, until

a maximum is reached. Note that changes made to the param-

eters are not arbitrary: parameters must be changed such that

a set of constraints is satisfied. Equation 32 represents a prob-

ability distribution that is normalized, so
P

ts
pðspike j sðtsÞÞ= 1.

Additionally, the moments of the distribution (Table 1) must

match those computed from the data. There is no need to

use a spectrally white stimulus with MNE. Lastly, by conven-

tion, one seeks the minimum value of the negative of the

logarithm of the likelihood rather than the maximum of the

likelihood.

Interpreting the MNE Model. How does the MNE model

(Equation 32) ensure the maximal variability in the spike

rate? Consider the maximum entropy distribution (Equation

32) without any constraints, i.e., a = h = J = 0. The probability

of a spike given a stimulus then is pðspike j sÞ = 1/2 and can be

thought of as the least structured spiking model. At every time
2

vector [i,j]-th component of a matrix

hr(t)s[i](t)s[j](t)i
1
M

P
tnðtÞs½i�ðtÞs½j�ðtÞ

pike j sðtsÞÞ pðspikeÞPts
s½i�ðtsÞs½j�ðtsÞpðspike j sðtsÞÞ
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bin, the neuron will fire or not fire with equal probability. The

next simplest model is the one where the probability of a spike

is independent of the stimulus pðspike j sÞ=pðspikeÞ, but the
overall firing rate is constrained to be the experimentally

measured rate, denoted r0. Now the goal of the fitting proce-

dure is to find a such that r0 =pðspike j sÞ= 1=ð1+ eaÞ, which

yields a = logð1=r0 � 1Þ.
In general, when there are multiple parameters, and spiking

depends on the stimulus, a numerical fitting procedure is

required to fit the value of the constraints computed from the

data and return the value of the parameters for the second-order

model (Equation 32). The zeroth-order term, hrðtÞi, has no stim-

ulus dependence and, as explained above, enforces that the

average firing rate of the MNE model equals that of the neuron.

The parameters h and J act as linear feature vectors analogous

to fsta and the fstc;i:

d Setting J= 0, equivalent to choosing a first-order MNE

model, results in the model

pðspike j sÞ= 1

1+ expfa+h,sg: (Equation 33)

This is equivalent to a STAmodel with a feature vector feature

fsta =h and a sigmoidal nonlinearity.
d The matrix J can be decomposed in terms of its

eigenvalues, li, and eigenvectors, denoted ui, with

i = 1;.;K, i.e.,

J=
XK
i = 1

liuiu
u
i : (Equation 34)

Defining the projection of a stimulus vector onto an eigen-

vector as zi =ui,s allows us to rewrite the quadratic term in

Equation 32 as:

suJs=
XK
i =1

liðs,uiÞðui,sÞ=
XK
i =1

liz
2
i : (Equation 35)

Therefore, the eigenvectors of J with large eigenvalues, in

absolute value, can be viewed as analogs of the STC fea-

tures fstc;i with a quadratic-sigmoidal nonlinearity. The

match is not exact, as J is fitted in together with the linear

component h, whereas fstc;i were calculated from the

covariance difference matrix (Equation 20), independently

of the STA. Similarly to the STC method, the eigenvectors

of J are orthogonal to each other by construction.

Thus we may not interpret these spatiotemporal vectors

as independent aspects of the input that drive the cell’s

response.

In the STC approach, the significance of a given feature

was determined by comparing the corresponding eigenvalue

of DC (Equation 20) to the null distribution constructed using
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shuffled spike trains. Here, because the model parameters

are estimated using a gradient ascent algorithm, we cannot

construct a null model using shuffled spike trains. It is still

possible, however, to estimate which of the eigenvalues of

J correspond to features, denoted ui, that significantly modu-

late the spiking output. We accomplish this by shuffling the

entries of J and computing the eigenvalues of the shuffled ma-

trix. Note that the shuffled matrix must remain symmetric,

and the diagonal and off-diagonal elements should be shuffled

separately. Eigenvalues of the matrix J obtained from the real

data are said to be significant only if they exceed the range

calculated using this shuffling procedure, since the shuffled

matrix represents a set of features with the same statistics

as the components of the MNE models, but without the

structure.

Relation to Minimal Mutual Information. From an informa-

tion theoretic point of view, the problem could be posed

differently (Globerson et al., 2009). In the MNE approach,

one seeks a minimally structured conditional distribution of

responses pðspike j sÞ. In contrast, in the Minimal Mutual In-

formation (MinMI) approach, one searches for the model,

i.e., the distribution pðspike j sÞ, where the responses pro-

vide the least information about the stimulus. Thus the

goal with MinMI is to find a lower bound on the information

content sent to a hypothetical downstream population. The

problems with the MinMI approach are that the resulting

model is typically highly structured and biologically unrealis-

tic, and that the lower bound represents a worst case sce-

nario that is unlikely to be attained by a biologically plau-

sible model.

MNE Models for Thalamic Spiking during Whisking in Rat.

We applied the MNE procedure to the datasets obtained

from thalamic recordings while rats whisked in air (Figure 8).

As expected, the calculated first-order feature, h, closely

approximated the STA feature (Figure 8A). We found that

the top nine of N= 150 eigenvectors of J were statistically

significant (Figure 8B). The dominant feature, u1, makes a

substantial contribution at short times, like the dominant

STC feature fstc;1 (Figure 8A), but decays much more

rapidly than the STC feature. The higher-order features

calculated from J, i.e., u2 through u9, correspond to varia-

tions in the stimulus from whisk to whisk and have no clear

interpretation.

A number of practical matters arise in applying the MNE

model. First, in its raw form, the fitting procedure can generate

high-frequency components that are not represented in the

stimulus and thus not constrained. In the present case, we

address this by removing the components orthogonal to the

first 15 principal components of the stimulus from the feature

vectors of the model. Second, we use the full matrix J that

was found by the fitting procedure to generate the predictions

using this model (discussed later under Model Evaluation).

Removing the insignificant eigenvectors often leads to poor

predictions because the average spike rate predicted from

the model no longer exactly matches the zeroth moment,

i.e., the average firing rate, since the projections onto the

insignificant eigenvalues of J do not sum exactly to zero.

Third, while overfitting is always a potential problem, this did
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Figure 8. The Dominant Features
Calculated by the Maximum Noise Entropy
Method for Example Thalamic Cell 57
(A) We fit a MNE model to the spike train with
the same stimulus representation, with N= 150,
and plot the first feature, i.e., h, and statistically
significant second-order feature vectors, i.e.,
eigenvectors of J (Equation 34). We also plot
the STA feature next to the first-order mode for
comparison.
(B) The number of significant second-order fea-
tures was found by comparing the eigenvalues of
J to a null distribution.
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not arise with this dataset, possibly because of the rapid fall-

off of the eigenvalues for the covariance of the stimulus matrix

(Figure 6E). We return to the issue of overfitting when we

discuss validation of the models and note that the MNE

method was particularly susceptible to overfitting for white

noise stimuli.

Separability

The feature vectors in the first two models we discussed,

namely STA and STC, are computed directly from the

spike-triggered and underlying stimulus distributions and

do not require a fitting procedure to be applied. As such,

they do not degrade significantly if the stimulus space is

expanded, for example, by assuming that the spiking de-

pends on the stimulus history further back into the past.

However, if the cell’s response is found to be modulated

by a large number of features, e.g., multiple STC modes,

the number of spikes will severely limit how many of these

can be incorporated in a predictive model. For algorithmi-

cally fit models, the number of parameters scales with the

dimensionality of the stimulus. In MNE, for example, the

scaling is linear for a first-order model (Equation 33) and

quadratic for a second-order model (Equation 34). Therefore,

these models may suffer from overfitting, as a presentation

of a large number of stimulus samples is required to accu-

rately fit the parameters.
Here we discuss two forms of separa-

bility, which can be thought of as approx-

imations that two or more of the model

components act independently. If these

approximations are accurate for a given

neuron, theymay greatly reduce the num-

ber of spikes needed to fit the model or

help prevent overfitting.

Separability of a Feature Vector. Many

stimuli, such as the checkerboard pre-

sented for the retinal studies, consist of

both spatial and temporal components.

Yet only a small number of these NX3NT

components (Equation 12) are likely to

be significant. The spatiotemporal fea-

tures fi may, in general, be expanded in

a series of outer products of spatialmodes

and temporal modes (Golomb et al.,

1994). We define these as f
X;d
i and f

T;d
i ,

respectively, where d labels the mode.
We express fi in the same form of a matrix for the space time

stimulus (Equation 12), i.e.,

fiðx; tÞ=
�����������������! �����������������NT time points0@ fið1; 1Þ / fið1;NT Þ

« 1 «
fiðNX ; 1Þ / fiðNX ;NT Þ

1AhNx spatial positions

=
X
d= 1

minðNX ; NT Þ
ld

0@ f
X;d
i ð1Þ
«

f
X;d
i ðNXÞ

1A�fT;d
i ð1Þ / f

T ;d
i ðNT Þ

�
(Equation 36)

where ld is the weight of the dth mode of the feature,

also referred to as the singular value in singular value

decomposition.

A great simplification occurs if the dependence on spatial

components and temporal components is separable. In this

case, the spatiotemporal features are well approximated by

the product of a single spatial and temporal contribution, i.e.,

only the d = 1 term in Equation 36 is used. This corresponds to

a single spatial pattern that is modulated equally at all pixels

by a single function of time. This assumption reduces the number

of parameters one needs to estimate, per feature, from NX3NT

to NX +NT + 1.
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Separability of the Nonlinearity. Another important form of

separability relates to the nonlinear function gð,Þ (Equations 7

and 9). While the nonlinearity gð,Þ can be any positive function

of the K stimulus components zi, the amount of data required

to fit gð,Þ over multiple dimensions is prohibitive. It is possible

to get around this data requirement by making assumptions

about gð,Þ. First, one might assume that the nonlinearity is sepa-

rable with respect to its linear filters (Slee et al., 2005). Under this

assumption, gð,Þ can be written as:

gðz1;.; zKÞ=g1ðz1Þ3.3gKðzKÞ: (Equation 37)

This approximation is equivalent to assuming that the joint

conditional probability distribution over the projections of

the stimulus on the feature vectors, pðz1; z2;.; zK jspikeÞ,
is equal to the product of the marginal distributions,

pðz1jspikeÞ. pðzK jspikeÞ. The validity and quality of this

approximation can be quantified using mutual information (Adel-

man et al., 2003; Fairhall et al., 2006), which is a measure of the

difference between joint and independent distributions.

Beyond the enormous reduction in the number of spikes suffi-

cient to accurately fit the model, a separable model that makes

reasonably good predictions can help us interpret the model

and potentially relate it to circuit and biophysical properties of

the system. A successful separable model implies that the cell

is driven by processes that are, to a good approximation, inde-

pendent. These could be, for example, inputs from parallel path-

ways such as separate dendrites or subunits, or the effects of

feedforward versus feedback processing. A specific example

of a model whose typical application generally assumes that

different factors influencing the firing of the neuron contribute

independently and multiplicatively is the generalized linear

model (GLM).

Generalized Linear Models

While the models so far only consider stimulus dependence, the

biophysical dynamics of the neuron or local circuit properties

might alter the ability of the cell to respond to stimuli as a function

of its recent history of activity. For example, all neurons have a

relative refractory period that could prevent them from spiking

immediately after a previous spike, even if the stimulus at that

time is one that normally strongly drives the cell (Berry and Meis-

ter, 1998). Further, projection neurons have a tendency to emit

bursts of spikes, such that the probability of a spike will be

increased if the cell has recently spiked (Magee, 2003). These

effects, along with other more general dependencies, can be

incorporated in the framework of a GLM (Nelder and Wedder-

burn, 1972; Brown et al., 1998).

GLMs are a flexible extension of standard linear models that

allow one to incorporate nonlinear dependencies on any chosen

set of variables, including the cell’s own spiking history. They

gain this ability to incorporate a richer set of inputs by taking

an explicit form for the nonlinear function gð,Þ to reduce de-

mands on data. A GLM is characterized by the choice of gð,Þ
and by a noise model that specifies the distribution of spike

counts, required to be within a class of distributions known as

the exponential family. This includes many appropriate probabil-

ity distributions, e.g., binomial, normal, and Poisson. As in previ-

ous approaches, we choose a Poisson process, for which the
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probability of counting n spikes in a time bin of width Dt at time

t is determined by the predicted firing rate rðtÞ averaged over

that time bin, i.e.,

pðn spikes between t � Dt and tÞ= ðrðtÞDtÞ
nðtÞ

nðtÞ! e�rðtÞDt:

(Equation 38)

The firing probability is taken to be a function gð,Þ of a linear

combination of the stimulus, the recent spiking of the cell, and

potentially other factors (Figure 1A). In its simplest form, the

spike rate is given by

rðtÞ=g

 
c+

X
t0 < t

fglmðt0Þ,sðt0Þ+
X
t0 < t

cðt0Þnðt0Þ
!
; (Equation 39)

where the parameter c sets the overall level of the firing rate, the

sum
P

t0 < tfglmðt0Þ,sðt0Þ is the familiar projection of the stimulus

onto the spatiotemporal feature fglmðtÞ, and we have now

included a temporal spike history filter, denoted cðtÞ, which is

a Nh-dimensional vector that weights the recent activity of the

neuron. Together we refer to the set of parameters for the GLM

as Q. The task is to determine the optimal value of Q given the

specific observed sequence of spike counts. This is done by

maximizing the likelihood, i.e., the probability of the data given

the parameters viewed as a function of the parameters,

LðQÞ=PðnðtÞ jQÞ, over choices of Q.

When the nonlinearity gð,Þ is both convex and log-concave,

the likelihood function will itself be a convex function. Thismeans

that the likelihood LðQÞ has a single, global optimum that can be

obtained through any convex optimization routine. Fortunately,

nonlinearities that satisfy this property include common choices

like the exponential and the piecewise linear-exponential func-

tion (Paninski, 2004). We adopt an exponential non-linearity for

all subsequent analyses.

Rather thanmaximize the likelihood function, wemaximize the

logarithm of the likelihood function, referred to as the log-likeli-

hood, which for Poisson spiking is

logLðQÞ=
X
t

nðtÞlogðrðsðtÞ jQÞDtÞ �
X
t

rðsðtÞ jQÞDt;

(Equation 40)

where rðsðtÞ jQÞ is the predicted firing rate, and we drop the nðtÞ!
term, as it is independent of the model. With this, the computa-

tional fitting problem we solve is simply

argmax
Q

ðlogLðQÞÞ; (Equation 41)

which can be maximized through a convex optimization routine

of choice.

Overfitting andRegularization.As for othermethods, themodel

that best fits the training datamay not generalize to test datasets.

In a likelihood framework, overfitting is simple to understand: one

can always improve the log-likelihood simply by addingmore pa-

rameters. Indeed, if the number of parameters encompassed by

Q is the same as the number of time points in the experiment M,

we can construct amodel that fits the observed data exactly. But
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this is not the aim of constructing a model. Rather, we seek to

find a model that captures trends in the data that are common

across different samples, rather than details of individual

fluctuations.

Overfitting arises either as a result of insufficient training data

relative to the number of parameters being estimated or from a

model that contains more parameters than are needed to

describe the relationship under consideration. As discussed

with respect to natural stimuli, correlations in the input reduce

its effective dimensionality of the data and thus the number of

parameters required in the model. A common effect in GLMs

and other algorithmically fit models is the appearance of high-

frequency components in the feature vector when the stimulus

is slowly varying. This occurs because the fast variations mini-

mally affect the predicted spike-trains and the likelihood when

the slowly varying stimulus is projected onto them (Equations

40 and 41). While their effect on the log-likelihood may be mini-

mal, they obstruct interpretation of the feature vectors fglm.

Such overfitting can be avoided by penalizing models that are

over-parameterized by adding a penalty term QðQÞ to the quan-

tity we are maximizing, i.e.,

argmax
Q

ðlogLðQÞ �QðQÞÞ: (Equation 42)

For instance, to avoid overfitting wemight choose the termQðQÞ
to be large for models that contain a large number of non-zero

parameters. The simple choice,

argmax
Q

ðlogLðQÞ � NQÞ; (Equation 43)

where NQ is the number of parameters of the model, is known

as the Akaike Information Criterion (Akaike, 1973; Boisbunon

et al., 2014). This and related criteria provide a simple, princi-

pled means to choose between competing models of differing

numbers of parameters and may be used to determine the

optimal stimulus and history filter sizes (Shoham et al., 2005).

Penalty terms may be interpreted as representing prior knowl-

edge relevant to the estimation problem. In particular, if one has

a prior distribution on the space of parameter estimates, pQðQÞ,
one can use Bayes’ rule to find an estimate that maximizes the a

posteriori probability, denoted QMAP, where
wiðtÞ= 1

2

8><>: 1+ cos

�
p

2

�
h log

�
t + t1
t0 + t1

�
� i + 1

��
; tRt0 and i � 3< h log

�
t + t1
t0 + t1

�
< i + 1

0; otherwise

(Equation 47)
QMAP = argmax
Q

logpðQ j s; rÞ= argmax
Q

ðLðQ; s; rÞ+ logpQðQÞÞ:

(Equation 44)

Then we can identify the penalty term as the negative logarithm

of the prior, i.e.,QðQÞ= � logpQðQÞ. For instance, if one expects
the feature vector to be smooth, one might apply a Gaussian

prior of the form
QðQÞ= kQuDQ: (Equation 45)

The function QðQÞ will penalize feature vectors that are not

smooth or that vary excessively when D is chosen to be a sec-

ond-derivative operator (Linden et al., 2003). The weight k is a

regularization parameter that determines the weight given to

the prior probability compared to the likelihood. It is often chosen

to maximize the model’s performance on data withheld from the

optimization procedure.

Finally, a very simple heuristic that sometimes mimics the ef-

fect of these regularization methods to avoid overfitting is early

stopping. Here we simply limit the number of iterations in the

fitting process to effectively stop the fitting before the unique so-

lution is found. This approach assumes that solutions near the

optimal one for the training data are good and also lead to gener-

alization. This involvesmonitoring the form of the solution at each

step of the optimization and choosing the number of iterations

that recovers a reasonable solution.

Choice of Basis. Overfitting can also be avoided by forbidding

rather than just penalizing models that are over-parameterized.

This is achieved by reducing the number of parameters of the

model to a value known through experience to be reasonable.

While we have discussed previously the simple expedient of

downsampling or truncating the data, more generally one can

project the stimulus into a subspace that captures important

properties of the data; the basis vectors for this subspace then

define the number of parameters of the stimulus feature vector.

One natural choice is to use the leading principal components

of the stimulus (Equation 18) as the basis set. In the case of the

spike history filter, one can choose basis functions that are appro-

priate to capture the expected biophysics of the neuron, such as

refractoriness or burstiness. A common set of basis functions to

represent spike history filters is a ‘raised cosine’ basis, denoted

by wi(t). This specific basis, despite a complicated functional

form, describes a set of bumps whose peaks are tightly spaced

near the time of the spike and become increasingly sparse for

earlier times (Pillow et al., 2008). The first function, w0, is given by

w0ðtÞ=
	
1; 0 < t < t0
0; otherwise:

(Equation 46)

and the additional wi are given by
where t0 is the refractory time, t1 sets the density of the basis

functions, t2 sets the onset of decay,B is the number of functions

with i = 0, ..., B� 1, and hh (B� 2)/log((t2 + t1)/(t0 + t1)). This ba-

sis is well resolved where the spike history filter is expected to

change most rapidly.

Stability. Despite much theory surrounding their application

(Paninski, 2004; Brown et al., 1998), correctly specifying a
Neuron 91, July 20, 2016 243
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Figure 9. The Fit of the Generalized Linear Model for the Responses of Retina Ganglion Cell 3 and Thalamic Vibrissa Cell 57
(A and C) The stimulus feature fglm compared with the previously calculated STA feature.
(B and D) The spike history filtersc (black curves) along with the exponent of the filter (gray). The history filters were expanded in the basis of equations 46 and 47
using B = 5, t0 = 0.333 s (retinal ganglion cells) or t0 = 0.020 s (thalamic cells), t1 = 0.4 s, and t2 = 2.0 s.
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GLM using appropriate timescales and basis functions remains

as much an art as a science. Particular care must be taken

in correctly parameterizing spike history filters. One approach

is to initially fit the model with no special basis functions,

examine the resulting filters, and then choose a parameteriza-

tion of a reduced basis, e.g., raised cosines or exponentials,

that allows for the form obtained in the full-dimensional case.

While this involves fitting a full-dimensional model, a lower-

dimensional model is ultimately obtained that is less likely to

be overfit.

Unfortunately, nothing guarantees that the maximum likeli-

hood estimate of a GLM will be stable, i.e., yield a sen-

sible prediction that can be compared to data. Unstable

models usually have predicted spike rates that diverge to in-

finity when stimulated by novel stimuli. While such models

may still provide insight from the form of their feature vec-

tors, they are not able to predict spike trains for novel stim-

ulus datasets, the essence of model validation. If unstable

GLMs are encountered, one should first check that the

parameterization of the spike history filter accurately charac-

terizes the neuron’s refractory period. In this regard, im-

proper spike sorting that leads to the presence of spike inter-

vals that are less than the refractory period (Hill et al., 2011b)

can cause misestimation of the spike history term and lead to

instability.

GLMs for Retinal Ganglion and Thalamic Cells. We fit GLMs

for the set of retinal ganglion cells stimulated with white noise

(Figure 3) and thalamic neurons stimulated by self-motion of

the vibrissae (Figure 6). We consider the white noise case first.
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A sequence of delta functions, i.e., independent pixels, was

used as the basis functions for the stimulus feature vector,

and raised cosines (Equations 46 and 47) were used as basis

of the spike history filter. For the same representative neuron

used previously, the feature vector fglm corresponds to a

transient spot of illumination that is similar to the STA feature

yet slightly delayed in time (Figure 9A). This shift is presumably

the effect of the spike history dependence, which leads to

increased firing rate approximately 40 ms after the previous

spike, a timescale similar to the stimulus refresh, Dt. Since

the effect of the spike history filter is exponentiated (Equation

39), we plot both the result of the fit (black line, Figure 9B) and

the exponent of the filter (gray line, Figure 9B) to more clearly

illustrate the effect that this component of the model has on

the predicted firing rate.

The GLM fit in the case of correlated noise gives a less intu-

itive but perhaps more interesting result. Here the 12 leading

terms of a PCA of the stimulus were used as the basis func-

tions for the stimulus feature vector, and, again, raised cosines

were used as the basis of the spike history filter. We observe

that the feature vector fglm oscillates for less than one whisk

cycle and returns to baseline very quickly (Figure 9C); it is

quite different from the fsta. Further, the spike history shows

a significant excitatory component, delayed by �6 ms, that

is likely to generate a burst of spikes at an approximately fixed

position in the whisk cycle (Figure 9D). The GLM analysis

therefore suggests that the thalamic cell is very responsive

to changes in position of the vibrissae but has little depen-

dence on the history of the stimulus or spiking at times earlier



Box 7. Spectral Coherence as Regression

Coherence may be viewed in analogy to the more familiar Pearson correlation coefficient in linear regression. The expected value

of the predicted rate given the observed rate is

Eð~rðfÞ j ~rsðfÞÞ= ~bðfÞ~rsðfÞ;

where the coefficient ~bðfÞ is

~bðfÞ= ~CðfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD
j~rðfÞ j 2

E
D
j~rsðfÞ j 2

E
vuuut :

Thus, to the extent that real and imaginary parts of both ~rðfÞ and ~rsðfÞmay be considered as Gaussian variables, ~CðfÞ forms part of

the regression coefficient. The variance of the expectation, denoted Vð~rðfÞ j ~rsðfÞÞ, is given by

Vð~rðfÞ j ~rsðfÞÞ=


1�

��� ~CðfÞ ��� 2�Dj~rðfÞ j 2E

and, of course, goes to zero when measured and predicted signals are the same.
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than approximately 80 ms in the past, which corresponds to

about half of a whisk cycle.

Model Evaluation
How well does each of the models perform in predicting the

spike rate for data that have the same statistical properties as

the training set but are otherwise novel? For each model and da-

taset, 80% of the data were used as the training set for fitting the

model, and the remaining 20%were reserved for testing. A num-

ber of measures are available to test the quality of the model in

predicting spikes. The most direct and intuitive is the root-

mean-square of the difference between the recorded firing rate

rsðtÞ and that predicted by the model. Ideally this would be

computed for responses to a repeated but rich stimulus so that

one could estimate the intrinsic variability of the neuronal spiking

response. However, here and in general for natural stimuli, one

only has a single presentation of the stimulus as the relationship

between the external variable and the spike train may be inher-

ently non-repeatable, as during behavior when the stimulus is

under the animal’s control.

Log-Likelihood

In this case, one can compare the log-likelihood of the data given

the model for different models. For Poisson spiking (Equation

38), this is

logLðfiÞ=
X
t

ðnðtÞlogðrðtÞDtÞ � rðtÞDtÞ: (Equation 48)

where r(t) is the predicted response of the model under evalua-

tion. Typically, the log-likelihood estimate has a common large

offset that depends only on the firing rate and a small range of

variation of the term logðrðtÞDtÞ among different models because

of the logarithmic compression. To estimate a lower bound on

the log-likelihood, we replace the calculated rate with the

measured rate to form a null hypothesis, i.e.,
logLnull =
X
t

ðnðtÞlogðhnðtÞiÞ � hnðtÞiÞ; (Equation 49)

where hnðtÞi is the average spike count in each bin. The confi-

dence level is determined by a jack-knife procedure (Sokal and

Rohlf, 1995) in which the 20% testing part of the data is

permuted with the training part.

Spectral Coherence

A complementary metric for the fidelity of the predicted spike

trains is the spectral coherence between the predicted and

measured responses. Coherence provides ameasure of correla-

tion between signals in the frequency domain and thus can

distinguish the performance of different models across different

frequency bands, each of which may have particular behavioral

relevance.

We define ~rðfÞ and ~rsðfÞ as the Fourier transform of the pre-

dicted and measured rates, respectively. The spectral coher-

ence, denoted ~CðfÞ, is:

~CðfÞ=
D
~rðfÞ~r+s ðfÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD
j~rðfÞ j 2

ED
j~rsðfÞ j 2

Er : (Equation 50)

The multi-taper method is used for averaging, h.i, over a spec-

tral bandwidth that is larger than the Raleigh frequency 1=ðNTDtÞ
(Thomson, 1982; Kleinfeld and Mitra, 2011).

The magnitude of the coherence reports the tendency of two

signals to track each other within a spectral band and is normal-

ized by the power in either signal. The phase of the coherence

reports the relative lag or lead of the two signals. There are no as-

sumptions about the nature of the signals. The confidence level

is determined by a jack-knife procedure (Thomson, 1982). Spec-

tral coherence may be viewed in analogy to the Pearson correla-

tion coefficient in linear regression (Box 7).
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Validation of Models with White Noise Stimuli

Thepredictionswith theSTAmodel, theSTCplusSTAmodel, and

the GLM capture the gross variations in spike rate for the retinal

ganglion cells (Figures 10A and 10B). TheGLMyields representa-

tive spike trains, as opposed to rates, so that we calculated pre-

dicted rates by averaging over many spike trains computed by

repeatedly presenting the same stimulus to the same model. In

these predictions, many spikes are unaccounted for, while the

spike probability also indicates spikeswhen none occur. Interest-

ingly, the STA plus STC model has the highest value of the log-

likelihood (Equation 48), while the GLM has the lowest, lower

even than the STA (Figure 10C). The relatively poor performance

of the GLM may imply overfitting of the training data, as models

that involve more parameters have a larger log-likelihood. All

models perform better than the null expectation (Equation 49)

(Figure 10C).

Greater insight into fitting of the models is provided by a

spectral decomposition. First, the spectral power of the stim-

ulus is constant, by design (Figure 10D), and the power of the

spike train decreases only weakly with increasing frequency,

consistent with a Poisson process. The spectral power for the

spike rates predicted from three models, i.e., STA, STC plus

STA, and GLM, show a rather strong frequency dependence.

The coherence is substantially below
�� ~CðfÞ �� = 1 at all fre-

quencies, yet it is highly statistically significant (Figure 10E).

Consistent with expectations from the log-likelihood (Fig-

ure 10C), the STC plus STA model has an approximately 5%

improved coherence at all frequencies (Figures 10E and 10F).

The GLM yielded inferior predictions. While the phase for the

STA and STC plus STA models is close to zero, which implies

that the predicted spikes arrive at the correct time, the phase

is a decreasing function of frequency for the GLM model

(Figure 10E). This implies that the predicted spikes arrive with

a brief time delay that is estimated to be ð1=2pÞðDphase=DfÞ =
�25 ms or less than Dt (inset, Figure 10A).

Synopsis. For thewhite noise stimulus and this particular set of

retinal ganglion cells, the data appear to be adequately modeled

by the single STA feature and the accompanying nonlinearity

(Figures 4C and 4D). The coherence shows an improvement

with the STC plus STA model (Figures 10E and 10F). The GLM

gives the poorest predictions by all measures, and the predicted

spikes occur with a shift in timing compared to the test data.

Time delays relative to reverse correlation approaches have

been seen in past implementations of the GLM as well (Mease

et al., 2014).

Not surprisingly, the MNE model, with a large number of pa-

rameters, was susceptible to overfitting (results not shown).

The parameters from fitting the stimulus set withN= 600 (Figures

4C, 5A, and 10A) led to a stable calculation of the linear feature,

h, and three statistically significant second-order features (Equa-

tion 32). Yet the model gave poor predictions, with a log-likeli-

hood metric that was lower for the MNE model than for the null

hypothesis (Equation 49) and a spectral coherence that was rela-

tively small. To reduce overfitting, we truncated the stimulus. The

log-likelihood for this reduced model increased, and there was a

concomitant increase in the spectral coherence at all fre-

quencies, although the coherence was still lower than that

achieved with the other models.
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Validation of Models with Correlated Noise from

Self-Motion

We now turn to the case of models for whisking cells in thalamus

(Figures 6 and 11). Here, the underlying stimulus is highly corre-

lated and strongly rhythmic (Figure 11A), with a broad spectral

peak at the fundamental and harmonic frequencies of whisking

(Figure 11D); recall that the stimulus has its slowly varying

midpoint removed (Figure 6D). Despite the structure in the stim-

ulus, the spectrum of the spike train of our example thalamic cell

was largely featureless (Figure 11D).

We first ask if whitening the stimulus does indeed lead to

an improved prediction. We computed the predicted rate

from the feature vector for the STA model, i.e., fsta, and

the feature vector after whitening bfsta (Figures 7A and 11B).

The relative values of the log-likelihood function were too un-

certain to offer insight. Interestingly, the spectral power for

the whitened and nonwhitened feature vectors are essentially

the same at all frequencies (Figure 11D). Further, we observe

that whitening slightly albeit insiginicantly increases the

coherence between the predicted and the measured rates

at the whisking frequency as well as at other frequencies

(Figures 11E and 11F).

We computed the predicted rate from the feature vectors for

the STC plus STAmodel, i.e., fstc;1 and fsta, and the feature vec-

tors after whitening, i.e., bfstc;1 and bfsta (Figures 7A and 11B). Un-

like the case for the STA feature alone, whitening increases the

coherence between the predicted and the measured rates

at the whisking frequency (Figure 11E), with
�� ~CðfÞ �� increasing

from 0.65 to 0.70, as well as at other frequencies. The exception

is that the coherence below about 1 Hz is better for the nonwhit-

ened STC plus STA feature vectors (Figure 11E).

Across all models, the best predictability at the whisking

frequency occurred with the whitened STC plus STA model,

albeit by an increase of only approximately 10% compared

with the other models. Some of the models exhibited a slight

phase advance at the whisking frequency. The largest

advance occurred for the STA model and corresponds to a

time shift of approximately ð1=2pÞðDphase=fwhiskÞ = 20 ms,

which is worrisome, although short compared to the approxi-

mately 160 ms period of a whisk. All told, none of the models

was clearly ‘‘best’’ or ‘‘worse’’ at all frequencies. The MNE

model appeared to be the least coherent with the measured

train at the lowest frequencies, yet the phase lag with the

NME model was minimal near the whisking frequency

(Figure 11E).

It has been shown that whisking may be characterized in

terms of a rapidly varying phase (Hill et al., 2011a), denoted

FðtÞ. If the firing of neurons is sensitive to phase in the

whisk cycle, independent of frequency, then a linear feature

vector will be a poor representation. We therefore con-

structed an additional model in which we first applied a

nonlinear transformation, the Hilbert transform (Hill et al.,

2011a), to the stimulus to extract FðtÞ. We then used Bayes’

rule to construct a phase tuning model to compare with the

LN approaches (Figure 6B):

pðspike jFÞ=pðF j spikeÞ pðspikeÞ
pðFÞ : (Equation 51)
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Figure 10. Summary of the Performance of Model Predictions for the Retinal Ganglion Cell 3
(A–F) Three methods—STA, STC plus STA, and GLM—are compared.
(A) A part of the spike train cut out from the test set for illustration purposes. Insert: expanded temporal scale to highlight the slight delay inherent with the GLM.
(B) The predicted spike count per frame obtained by computing the probability of a spike corresponding to each stimulus frame (top, STA; middle, STC; bottom,
GLM). Note that to generate a prediction from the GLM at time t we need the history of the spike train up to that point t0 < t, which is not deterministic due to the
Poisson variability. Thus, the trace presented here (orange) is the average spike count over 500 simulations of the GLM on the test set.
(C) The log-likelihood (Equation 48) of each model given the test set, which quantifies the quality of the prediction. We further include the log-likelihood for the null
condition (Equation 49). The bars are one standard error jack-knife estimates.
(D) The spectral power of individual pixels in the stimulus (black) and the recorded spike train (gray), as well as those of the predicted spike trains. The mean value
has been removed, so that the initial data point represents an average over the spectral half-bandwidth. Spectra were computed with a half-bandwidth of
0.087 Hz as an average over 159 spectral estimators across four epochs of 920 s of data or reconstructions.
(E) The phase and magnitude of the spectral coherence between the recorded and predicted spike train for each method. Coherence was computed with a half-
bandwidth of 0.065 Hz as an average over 119 spectral estimators and four epochs of data and reconstructions.
(F) The coherence averaged from 0.5 to 5.0 Hz, together with one standard error jack-knife estimates for the average.
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The phase tuning model achieves the same high level of coher-

ence at the whisking frequency as the whitened STC plus STA

model (Figures 11D–11F). This suggests that the feature vectors

are largely acting as broadband filters. Of course, the tuning

model performs badly for frequencies away from the �6 Hz

whisking peak (Figure 11E).

Finally, we consider two additional thalamic neurons that

had extreme response properties (Figure 12). The first is a

neuron that tended to spike with respect to changes in the

amplitude of whisking (Figures 12A–12D). Here the whitened

STA and STC plus STA models did well, the MNE model ex-

hibited significant coherence over the broadest frequency

range, and the GLM did poorly (Figure 12E). On the other

hand, we consider a neuron that responds almost solely to

the phase of whisking (Figures 12F–12H). The whitened STA

and STC plus STA models performed best at the whisking fre-

quency (Figures 12I and 12J); the phase tuning model performs

particularly well.

Synopsis. This analysis suggests that for stimuli of this

type, a metric for ‘‘goodness of fit’’ based on spectral decom-

position offers far more insight than a scalar measure based

on maximum likelihood. This may be particularly helpful

when certain frequencies may have ethological significance.

As for the ‘‘best’’ method with the thalamus data, the

whitened STC plus STA model had the highest coherence at

the whisking frequency (Figure 11F). Yet we were also im-

pressed with the results obtained with the MNE model, which

fits well over a broad range of frequencies. This stands in

contrast to the difficulties in using MNE with the white noise

data.

A noteworthy issue concerns the jack-knife estimate of the

standard error. Unlike the case of a continuous record for

retinal ganglion cells, the thalamic neurons were recorded

for one to two dozen whisking bouts, each a few seconds

long. Thus the test set for each jack-knife consisted of a

recording of variable length, as opposed to exactly 20% of

the data. Additionally, whisking variables such as amplitude

and frequency are not stationary but change from bout to

bout during active sensing behavior. These experimental is-

sues, taken together with the log-likelihood being a shallow

function that depends on the average firing rate, led to

systematic differences between the different jack-knives

that are larger than the differences between models; note rela-

tively large error bars in the figure (Figure 11C). These issues

were partly resolved by looking at the spectral coherence (Fig-
Figure 11. Summary of the Performance of Predicted Spike Trains for
(A–F) Seven means of analysis are compared, i.e., STA, STA after whitening of th
GLM, and a phase tuning curve model.
(A) The stimulus corresponds to vibrissa position with slowly carrying changes in
(B) The predicted probability of spiking per 2 ms time bin obtained by comput
prediction from the GLM at time t, we need the history of the spike train up to tha
trace presented here (orange) is the average spike count over 500 simulations o
(C) The log-likelihood (Equation 48) of eachmodel given the test set, which quantifi
jack-knife estimate.
(D) The power spectra of individual pixels in the stimulus (black) and the recorded
computed with a half-bandwidth of 0.6 Hz as an average over 23 spectral estim
(E) The phase and magnitude of the coherence between the recorded and predict
half-bandwidth of 1.2 Hz as an average over 49 spectral estimators.
(F) The magnitude of the coherence at the peak of the spectrum for whisking (*),
ures 11E and 11F), which is less susceptible to systematic

differences.

Network GLMs
The GLM framework can be readily extended to network imple-

mentations of M neurons (Truccolo et al., 2005; Pillow et al.,

2008). Each neuron is considered to be driven by a filtered stim-

ulus, its own spiking history, and also the filtered activity of the

rest of the neurons. If cijðtÞ ði; j = 1;.;MÞ is the filter acting on

the spiking history of neuron j driving neuron i, then the model

for the ith neuron is

riðtÞ= exp

(
ci +

X
t0 < t

fiðt0Þ,sðt0Þ+
XM
j = 1

X
t0 < t

jijðt0Þnjðt0Þ
)
:

(Equation 52)

The incorporation of such network filters has been shown to

improve the capability of the model to account for correla-

tions between neurons in a retinal population (Pillow et al.,

2008). While it is tempting to interpret the network filters as

capturing, for example, synaptic or dendritic filtering of direct

inter-neuronal connections, these terms cannot be taken to

imply that two neurons are anatomically connected. For

example, correlations might arise from a common input that

is not taken into account through the stimulus feature vector

(Kulkarni and Paninski, 2007; Pillow et al., 2008; Archer et al.,

2014).

Prior work found coupling terms, cijðtÞ, in a network GLM

(Equation 52) that could be interpreted as functional interac-

tion kernels between cells (Pillow et al., 2008). In that study,

model validation of each neuron was done using the stimulus

and the recorded activity of the remainder of the cells. This

procedure is equivalent to fitting a single-cell model where

the stimulus is expanded to include the spiking history of

the rest of the network, i.e., the njðtÞ. As a practical matter,

this procedure has value when one is interested in the pre-

cise timing of coupling between cells, e.g., to find whether

neurons are anatomically connected (Gerhard et al., 2013).

However, expanding the stimulus to encompass the spiking

history of the rest of the network stands in contrast to valida-

tion of a GLM that represents a network with feedback be-

tween neurons, for which the spike histories are based

solely on simulations and the only external variable is the

stimulus. We use the full network approach in our validation

procedure.
Thalamic Neuron 57
e stimulus, STC plus STA, STA and STC after whitening of the stimulus, MNE,

the set-point removed.
ing by each model and the corresponding stimulus. Note that to generate a
t point, t0 < t, which is not deterministic due to the Poisson variability. Thus, the
f the GLM on the test set.
es the quality of the prediction. The bars are one standard error computed as a

spike train (gray), as well as those of the predicted spike trains. Spectra were
ators.
ed spike train for each method (Equation 50). Coherence was computed with a

6.7 Hz, with one standard error jack-knife estimates.
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Figure 13. Summary of the Three-
Dimensional Monkey-Based Reach Task
with Spike Data from Unit 36
(A–D) Analysis is based on a single �90 min
recording session in which the monkey performed
the task; both cursor motion and grip force are
recorded.
(A) Grip-and-reach task involves first moving the
cursor to a central position, followed by gripping
the handle with sufficient force. Once gripping at
the center, after a variable wait time, a target ap-
pears randomly in one of eight locations. Following
another wait of a variable time, the cue at the origin
disappears, acting as a go signal, after which the
monkey may perform the reach movement. Grip
on the handle has to be maintained through the
duration of the trial. A successful trial requires
reaching the target within a set time limit. Once the
target is reached, the monkey needs to hold the
cursor at the target for 700 ms and to release its
grip on the handle. Following a successful trial, the
monkey receives a reward, and after an inter-trial
period, the next trial begins.
(B) Measured cursor position and grip force.
(C) Stimulus autocorrelation.
(D) Distribution of inter-spike intervals shows a
clear refractory period.
Methods: Spikes were recorded from single iso-
lated units in the contralateral cortex to the task
arm using an intracortical multi electrode array
(Blackrock Utah array) implanted in the arm region
of M1. Spiking data were binned into millisecond
intervals, while both cursor data and grip force
are sampled at 100 Hz. Of the isolated units, we
selected those that showed no evidence of
contamination based on inspection of the inter-
spike interval distribution. Analysis was performed
from the time of the Go signal until the grip was
released; see gray band in (B).

Neuron

Primer
Application toCortical Data during aMonkeyReach Task

We present an example of a network GLM based on nine simul-

taneous recordings from monkey primary motor cortex in which

the monkey performed a grip-and-reach motor task (Engelhard

et al., 2013). The GLM consists of feature vectors that relate to

hand motion, as measured by a cursor trajectory and grip force

(Figure 13A), that were modeled with Gaussian-bump basis
Figure 12. Summary of the Performance of Predicted Spike Trains for Two Additional Thalamic
(A–E) The whisking stimulus (A) and predicted spike probabilities (B) for a cell with weak phase tuning (C). Yet t
whisking, which changes on a slow timescale, approximately 1 s, compared with changes in phase. The predic
i.e., STA after whitening of the stimulus and MNE. The phase tuning model performs poorly as it ignores the am
calculated for the coherence at low frequency (*), 0.5 Hz (E).
(F–J) Thewhisking stimulus (F) and predicted spike probabilities (G) for a cell with particularly strong phase tuni
that perform best, i.e., STA after whitening of the stimulus,MNE, and the phase tuningmodel. Here the coheren
in the whisking frequency band is near 1.0 for all models (I). The one standard error jack-knife was calculated
functions. Since motor neurons can

encode future motor outputs, the stim-

ulus feature encodes both past and future

relationships relative to the current time

bin (Figure 13B). Similar choices with

GLMs have been previously applied to

neurons in motor cortex (Shoham et al.,

2005; Truccolo et al., 2005; Saleh et al.,

2012). Lastly, we used raised cosine ba-
sis functions (Equations 46 and 47) for the spike history filters

and the coupling filters for the histories of other neurons in the

network.

The cursor position and grip data vary over hundreds of milli-

seconds to seconds (Figure 13C), while the spike history data

vary on the order of milliseconds. Capturing effects on these

disparate timescales within the same model requires some
Cells, Units 88 and 99
his cell was strongly modulated by the amplitude of
ted rate is shown for twomodels that perform best,
plitude (D). The one standard error jack-knife was

ng (H). The predicted rate is shown for threemodels
ce between the predictions and themeasurements
for the coherence at low frequency (*), 0.5 Hz (J).
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care, as the values of the data have a non-Gaussian distribution

and are highly temporally correlated; as noted, this correlation

can result in uninterpretable high frequencies in the feature vec-

tors. This requires some form of regularization. Here, we used

only a limited number of basis vectors that sparsely sample the

stimulus at regular intervals, with the interval size on the order

of the stimulus autocorrelation timescale (Figure 11C).

The fitting was performed only on data within the movement

phases of the trials, i.e., from the beginning of the ‘‘Go signal’’

to the end of ’’Grip pressed’’ (gray bands in Figure 13B). In order

to avoid unnecessary coupling terms, a group ‘‘least absolute

shrinkage and selection operator’’ (LASSO) (Yuan and Lin,

2006) penalty is applied to the sets of parameters representing

connections between neurons. This takes the form (Equations

42 and 45)

argmax
Q

 
logLðQÞ � k

XM
isj

kQi;j k 2

!
; (Equation 53)

where fQi;jg are the parameters representing the coupling from

neuron j to neuron i. A similar penalty is applied in prior work (Pil-

low et al., 2008). The penalized likelihood is still convex and en-

sures global convergence.

Validation

As in the previous cases, the model is validated by splitting the

data into a training set representing 80% of the total data. A

test set representing a contiguous block of 20% of the total

data, or 4min of recording, is used for validation. We take a value

k = 100 in our network analysis (Equation 53); smaller values

decreased the log-likelihood while larger values reduced all

coupling terms to near zero. We then calculated the predicted

rate for the models, used in the log-likelihood estimate (Equation

48), by averaging repeated simulations of the GLM given the

same stimulus. This validation process was repeated five times,

selecting a non-overlapping 20% of the data for testing each

time. Combining the likelihood and coherence estimates over

all the individual estimates allows the mean likelihood and the

standard error of the mean likelihood to be determined for both

the coupled and uncoupled models.

With respect to a representative example cell (Figure 13),

we find that the history filters are the same for the coupled and

uncoupled cases (Figure 14A), coupling terms are present on a

variety of timescales, (Figure 14B), and the stimulus feature vec-

tors are altered in magnitude by the coupling (Figure 14C). Inter-

estingly, for all cells in the network, the log-likelihood of the

model evaluated for the observed spike train shows overall

a negligible difference between the coupled and uncoupled

models (Figure 14D). This is consistent with studies of coupled

GLMs applied to retina data (Pillow et al., 2008), in which the

addition of coupling terms yields no observable benefit to pre-

dicting the average rate given the same stimulus.

As for the retina and thalamus datasets, more information can

be gleaned from the coherence between the predicted rate and

the observed spike train than from the log-likelihood. Significant

spectral power in both coupled and uncoupled cases only

occurred for low frequencies, i.e., 0–1Hz, and the coupledmodel

had a significantly higher coherence in this range for some cells

(Figure 14E). This increase was statistically significant and
252 Neuron 91, July 20, 2016
particularly strong for our example cell (red ellipse in Figure 14F)

and one other cell (blue ellipse in Figure 14F) and barely signifi-

cant in three other cells (green ellipses in Figure 14F). Thus

network interactions through the spike history terms of neigh-

boring cells improve the ability to predict the spike trains for

some cells in this dataset.

Further Network GLM Methods

A priori, the coupling terms of the network GLM cannot be inter-

preted as representing direct or anatomical connectivity. Rather,

they are best understood as representing functional interactions

between the neurons modeled. Such measures of connectivity

can still provide insight into anatomical connections in small net-

works (Gerhard et al., 2013) and population dynamics and

encoding in large systems (Stevenson et al., 2012; Chen et al.,

2009; Takahashi et al., 2012). In these cases it is useful to

quantify the significance of a coupling term between neurons.

A common approach is to employ an analysis based on Granger

causality (Granger, 1969; Seth et al., 2015). Granger causality is

designed to determine when one variable is useful in predicting

another. If a causal relationship between two processes exists,

then the past values of one process should help to predict the

future values of the other process. One can apply a variant of

Granger causality to the network GLM (Equation 52) to test the

connection from neuron j to neuron i (Kim et al., 2011). Other

ongoing attempts to use maximum entropy methods have

been reviewed (Fairhall et al., 2012). More generally, the issue

of disambiguating direct interactions from interactions that occur

through unobserved, or latent, variables is receiving increasing

attention (Pfau et al., 2013; Vidne et al., 2012; Okun et al., 2015).

Discussion
We have presented and analyzed a class of methods that sum-

marize the response properties of neurons in terms of one or a

few feature vectors and an associated nonlinear input/output

function (Table 2). These methods provide a principled means

to describe neuronal spike responses. However, they are still

phenomenological, and it is fair to ask what has been gained.

First, thesemethods provide a largely automatic and objective

means to determine neuronal feature vectors, allowing one to

determine how responses ‘‘tile’’ stimulus space. Second, the

models are predictive and can be applied to novel stimuli, both

as a crucial test of the reliability of the fit of the model as well

as a means to estimate the fraction of the cell’s response that

is modeled by one or a few features. Further, the ability to predict

spikes from stimuli will likely play a critical role in neuroprosthetic

devices to restore sensation, such as artificial cochleas (Brown

and Balkany, 2007), retinas (Trenholm and Roska, 2014; Niren-

berg and Pandarinath, 2012), semi-circular canals (Merfeld and

Lewis, 2012), and even artificial proprioception (Tabot et al.,

2013). Third, the feature vectors and the nonlinearity serve as a

basis to quantify changes in computation with context (Fairhall

et al., 2001; Fairhall, 2013; Geffen et al., 2007), attention (Rabino-

witz et al., 2015), learning (Shulz et al., 2000), and through neuro-

modulation (McCormick et al., 2015).

Model Assessment

Generally, one would like to measure neural responses to

repeated trials, allowing one to estimate the intrinsic variability

in the responses and thus bound the expected precision of
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Figure 14. Network GLM Features and Validation forMonkey Reach Data Using the Interval between the Start of the Go Signal and the End of
the Trial
(A) Spike history filter for sample unit 36, one of nine concurrently recorded units in our analysis. The nine were chosen as those out of 45 units with no extra spikes
in the refractory period of the inter-spike interval. Red curve shows result for the coupled model (k = 100 in 52), and black curve shows the filter in the absence of
coupling between units; in this case the two curves are indistinguishable.
(B) Spike history filters from eight neighboring cells for the coupledmodel (k = 100) (Equations 52 and 53). The history filter was expanded in the basis of Equations
46 and 47 using B = 5, t0 = 0.005 s, t1 = 0.4 s, and t2 = 2.0 s. The coupling terms are non-zero for three neighbors.
(C) Feature vectors calculated for the network, i.e., coupled (red), and single cell, i.e., uncoupled GLM (black).
(D) Scatterplot of log-likelihood between predicted spike rate and observed spike train for the coupled and uncoupled model. The red dot refers to the data in
(A)–(C); the bars are one standard error jack-knife estimates.
(E) The spectral coherence, calculated as an average over 100 trials with a 0.5 Hz bandwidth, for the network, i.e., coupled (red), and single cell, i.e., uncoupled
GLM (black). The band is one standard error.
(F) Scatterplot of the coherence between predicted spike rate and observed spike train for the coupled and uncoupledmodels. The ellipses are one standard error
jack-knife estimates. The red ellipse refers to the data in (A)–(C) and (E). The red and blue data are significant at the level of three standard errors (0.01), the green
data barely significant at two standard errors (0.05), and the gray data have no significant improvement from coupling to the network.
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the model predictions. This results in an observed variance that

is a continuous function of time and can be compared to a

‘‘model,’’ in this case the observed mean rate; these values, of

course, depend on the scale of smoothing applied to the data.

Within early stages of the visual pathway, modeling based on

repeated trials capture 80%–90% of the trial-to-trial variance in

macaque retina (Pillow et al., 2008), 80%–90% of the variance
in cat primary visual cortex (Touryan et al., 2002), and 94% of

the variance in macaque primary visual cortex (Rust et al., 2005).

Here we dealt with the more general case of data that did not

have repetitions. We therefore chose to evaluate the accuracy of

each model’s prediction in two different ways: the log-likelihood

(Equation 48) and the coherence (Equation 50) between the test

spike train and the prediction. The log-likelihood, applied to test
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Table 2. Summary of Methods

STA STC + STA MNE GLM

Number of stimulus

feature vectors

One Typically two or three,

bounded by the stimulus

dimension

Bounded by the stimulus

dimension

One

History dependence No Yes

Network interactions No Yes

Fitting method Averaging and binning Matrix diagonalization

and binning

Optimization

Nonlinearity Derived from expectation or Bayes’ procedure Fixed as sigmoidal Fixed as exponential

Binning of stimulus

projections

Necessary but not

problematic

Necessary but

problematic for multiple

dimensions

Not appropriate

Convergence on

training set

Guaranteed for elliptic distributions of stimuli with a

non-zero second moment

Optimization converges as fitting is convex

Overfitting Not a problem with

appropriate binning

Not a problem since

nonlinearity is smoothed

in light of sparse data

Potential problem as

number of parameters

scales as square of

stimulus dimension

Potential problem from

features and spike

history that occur on

vastly different

timescales

Pioneering

publication(s)

Marmarelis and Naka,

1972; Eckhorn and

Pöpel, 1981

de Ruyter Van

Steveninck and Bialek,

1988

Fitzgerald et al., 2011b

for cells; Granot-Atedgi

et al., 2013 for networks

Brown et al., 1998 for

cells; Pillow et al., 2008

for networks
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data (Figures 10C and 11C), is a natural choice, as it is used as an

objective functionwhen fitting theMNEmodels and theGLMand

can be usedwith spike trains as well as spike rates. However, we

observed that it is not always satisfactory. It can be a shallow

function that does not clearly discriminate between predictions

from models that are rather distinct (Figures 10C and 11C).

Also, as a scalar quantity, the log-likelihood provides no insight

into what aspect of the cell’s response is or is not captured by

the model.

Calculating the coherence between the responses and the

predictions offers a complementary approach (Figures 10E,

11E, 12D, and 12I). Coherence has not been used directly as

an objective function for model fitting. In contrast to the log-likeli-

hood, it gives a normalized measure of the portion of the power

of the neuronal responses at a given frequency that is explained

by each model. It also indicates timing errors via phase shifts

(insert in Figure 10A and Figures 10E and 11E).

The magnitude of the coherence provides information about

what aspects of the spike rate are captured by the model and

may provide insight into how the model can be improved. The

normalization allows one to compare results between cells in

addition to comparing models of the same cell. The coherence

will be less than one because of variations that are independent

of the stimulus and thus are not captured by the models, as well

as because of nonstationary variations, such as changes in brain

states (Goris et al., 2014; McCormick et al., 2015). Further, it is

always possible that an improved model could perform better

on the existing data; in this regard the reported coherence

should be taken as a lower limit on the predictability of the spike

pattern.

Caveats on Whitening

The whitening procedure for the STA and STC analysis is math-

ematically sound for random stimuli that haveGaussian statistics
254 Neuron 91, July 20, 2016
(Paninski, 2003) and a limited number of other distributions (Sa-

mengo and Gollisch, 2013). Even when this constraint does not

strictly hold, our experience (Figure 7) suggests that, despite

no convergence guarantees, a whitened STA or STC plus STA

model can give rather good predictions for responses to novel

stimuli with natural statistics (Figure 11). The whitening proce-

dure, however, does not always substantially improve predic-

tions over using the raw stimulus. Since the latter simple

approach is easier to construct and less computationally

demanding than models specifically tailored for natural scenes,

it is worthwhile to construct them and test their predictions.

An intermediate case between natural scenes and Gaussian

white noise is when stimuli are drawn from a highly correlated

Gaussian distribution, such that the variance along some dimen-

sions is much greater than along others. Here the STCmethod is

guaranteed to converge to the correct set of features, but the

large ranges of variances may imply a slow convergence rate.

This process can be improved through a modification of the

STC method (Aljadeff et al., 2013).

Adaptation and Dependence on Stimulus Statistics

One significant issue with the fitting of LN models is that the

resulting model, including feature vector, spike history filter,

and nonlinearity, often depends on the mean, variance, and cor-

relation structure of the stimulus that is used to probe the sys-

tem. For many sensory systems, the changes that are observed

in LNmodels for different stimulus ensembles (Fairhall, 2013) act

to improve information transmission through the system, i.e., ac-

count for the presence of noise (Atick, 1992), match the dynamic

range of the input/output to the range of stimuli (Brenner et al.,

2000; Fairhall et al., 2001; Wark et al., 2007), or cancel out

correlations in the input to produce a predictive code (Srinivasan

et al., 1982; Hosoya et al., 2005; Sharpee et al., 2006). In

some cases, the timescales under which these changes occur
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suggest that biophysical or circuit properties are likely to be

altered through adaptation to different stimulus conditions (Ho-

soya et al., 2005; Sharpee et al., 2006). However, when the stim-

ulus ensemble is changed abruptly, some corresponding

changes in LN models follow close to instantaneously and

need not require changes in any biophysical properties of the

system (Rudd and Brown, 1997; Fairhall et al., 2001; Mease

et al., 2013). These effects can occur because different stimulus

ensembles may drive the system through different parts of its

nonlinear regime, and the response behavior is only approxi-

mated through the LN model. Thus the best reduced model

describing responses for a particular stimulus ensemble will

depend on how that ensemble drives the system, even without

any changes in the system itself (Gaudry and Reinagel, 2007;

Hong et al., 2008; Mease et al., 2014). In some cases these de-

pendencies can be predicted explicitly (Hong et al., 2008; Famu-

lare and Fairhall, 2010) but more typically are simply empirically

observed.

The development of models that incorporate dependencies

on stimulus statistics would be of great value and would be

able to generalize to a wider range of stimuli. One might have

hoped, for example, that the GLM’s dependence on the history

of activity might take into account issues like spike frequency

adaptation and allow one to separate out a common stimulus

sensitivity alongwith a dependence on firing rate that could allow

for greater generalization. However, GLMs fit for different stim-

ulus statistics generally differ in all components (Mease et al.,

2014) and do not generalize well to different ensembles. It

is likely that incorporating features or dynamics acting over

multiple timescales can provide sensitivity both to rapid fluctua-

tions and slower-varying statistical properties of the stimulus.

For example, a promising current alternative approach is the

development of hybrid models that combine an LN model with

a dynamical component modeling, e.g., activity-dependent

changes in kinetic parameters (Ozuysal and Baccus, 2012).

Population Dimensionality Reduction

The potential role of correlation in neuronal firing is widely recog-

nized (Cohen and Kohn, 2011). The network GLM is just one

approach to deciphering how the activity of many neurons in a

fully connected network jointly encodes external inputs/outputs

and carries out internal dynamics. More generally, one might

expect to be able to represent measured high-dimensional

multi-neuronal activity in terms of a smaller number of spatially

distributed activation patterns. One approach toward this goal

is to project activity patterns into a low-dimensional space and

reveal the dynamics that occur during computation (Cunning-

ham and Yu, 2014). A natural starting point to determine this

space is to apply PCA to the instantaneous firing patterns (Mazor

and Laurent, 2005; Briggman et al., 2005; Churchland et al.,

2010a, 2010b). The method of Gaussian process factor analysis

(Yu et al., 2009) further adds some assumptions on the smooth-

ness of the temporal evolution of firing patterns. Given these

reduced descriptions of neural activity, typically one then

‘‘reverse correlates’’ on a generally arbitrary or experimenter-

defined low-dimensional description of the stimulus or behavior

to sort and analyze these patterns according to their external

correlates (Churchland et al., 2010a, 2010b). The second strat-

egy aims to systematically model the multi-neuronal response
distribution, Pðr1; r2;.; rnÞ, and its correlations using maximum

entropy approaches (Schneidman et al., 2006; Ganmor et al.,

2011; Fairhall et al., 2012). In this case, similar to the MNE

approach (Equation 32), one fits a maximum entropy distribution

to the joint neural responses by choosing relevant constraints on

the response, such as mean firing rates and correlations. Typi-

cally these methods do not yet provide a full mapping of input

to output. Hybrid maximum entropy models, where the first

moment of the distribution depends on the response and the

second on network interactions, have also been proposed

(Granot-Atedgi et al., 2013).

Non-spiking Data

We have focused on the relation of spikes, or more generally

point processes, to the ongoing stimulus. Yet many neurological

events are smoothly varying. At the macroscopic level, this in-

cludes the subthreshold flow of current in the extracellular space

that is measured by field electrodes or by magnetoencephelog-

raphy, while at the microscopic level this includes the subthresh-

oldmembrane potential as well as secondmessenger activation,

such as the intracellular concentration of calcium or cyclic AMP.

Measurements of intracellular calcium are of particular impor-

tance as the technology to measure such signals with a high

signal-to-noise ratio is pervasive throughout neuroscience (Svo-

boda et al., 1997; Grienberger and Konnerth, 2012), and the

onset of the calcium signal can often be taken as a surrogate

for an electrical spike (Lütcke et al., 2013). The methods we pre-

sented to compute the STA, STC, and MNE features can readily

be used to compute feature vectors by replacing the number of

spikes per sample time, nsðtÞ, by the intensity of the sampled

signal (Ramirez et al., 2014). The challenge arises in inferring

exact spike times from such signals, which are needed to fit

some models. For the case of spiking, the procedures of spike

detection and sorting provide a threshold between no spikes

and one or more spikes, although this discrimination process

has an associated uncertainty (Lewicki, 1998; Hill et al.,

2011b). For an analog process like a change in intracellular cal-

cium, one could simply regard the signal as a continuous signal

and choose an appropriate noisemodel, e.g., Gaussian. Alterna-

tively, one can represent it as a point process by selecting a

threshold level of detectability. Detection of calcium events, as

well as their mapping to spikes, is a topic of ongoing research

(Vogelstein et al., 2010).

The generalized integrate and fire method (Pozzorini et al.,

2015) provides an extension of the GLM method to account for

both spiking and subthreshold dynamics, as would be obtained

from an intracellular measurement of membrane potential. The

generalized integrate and fire method incorporates a term that

filters the membrane potential as it evolves over time that is

equivalent to the stimulus feature vector in the GLM. It further in-

corporates two spike history filters. One is equivalent to the spike

history filter in the GLM, and the second is a new term that

evolves over time and shifts the threshold of the spiking nonlin-

earity. This approach accounts for the subthreshold dynamics

of the neuron yet bypasses complicated modeling of the active

membrane currents.

Conclusion

We have presented, evaluated, and provided code for a number

ofmethods, all established if not quitemainstream, that answer a
Neuron 91, July 20, 2016 255
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simple question: what makes a neuron fire? We, along with a

plethora of other practitioners, believe that these methods

provide a convenient starting point to obtain insight into the re-

sponses of neurons typically obtained in a recording session.

In so far as this has proven useful for measurements of single

cells, the development of efficient and effective descriptive

models becomes a necessity for simultaneous measurements

across populations of neurons—thousands if not millions of

neurons at once, if the hopes for new electrical and optical

probes bear out (Alivisatos et al., 2012). As yet, serious limita-

tions apply. When real data do not satisfy certain constraints,

such as Gaussian distributed stimulus inputs and monotonic

input/output functions that guarantee convergence for simpler

methods, heuristics need to be used to keep fitting procedures

from becoming numerically unstable. Even in the retina, LN

models often fail to generalize to natural stimuli and do not

capture more complex responses. Responses in neurons that

are far downstream from the sensory periphery often have invari-

ances that are very difficult to capture by these methods. In pri-

mary visual cortex, LN models have added substantially to the

richness of previous descriptions, yet leave much unexplained

(Olshausen and Field, 2005). Further, real-world stimuli may

contain critical yet rare stimulus events (Khouri and Nelken,

2015), at least rare on the timescale of typical physiological re-

cordings. By their very nature, rare stimuli will not be captured

by low-order statistics no matter how hard they drive a cell to

spike. Despite these caveats, we are optimistic that continuing

advances that extend these approaches will become part of

the standard canon of electrophysiology as recording tech-

niques progress. But the application of spiking models is still

an art form and, like much of electrophysiology (Kleinfeld and

Griesbeck, 2005), is not yet an industrial process. Fortitudine

vincimus.

Implementation
All calculations were performed using MATLAB running on

a single processor computer. Annotated code is supplied

that was used for all calculations and to generate the figures

in the manuscript, along with all datasets (see Supplemental

Information and, for updated versions, https://github.com/

NeuroInfoPrimer): 53 salamander retina sets, 7 rat thalamic

sets, and 9 monkey cortex sets. We recommend that inter-

ested individuals first repeat the calculations that we used to

generate the figures for this paper, then modify the code to

analyze their own data.

The following commercial software from MathWorks (http://

www.mathworks.com) is required: MATLAB, the Image Pro-

cessing Toolbox, the Optimization Toolbox, the Signal Process-

ing Toolbox, the Statistics Toolbox, and the Symbolic Math

Toolbox. In addition, the following free software must be down-

loaded: Daniel Hill’s code for the Hilbert transform (http://

neurophysics.ucsd.edu/software.php), Partha Mitra’s Chronux

Toolbox (http://www.chronux.org), Jonathan Pillow’s General-

ized Linear Model (GLM) implementation for spike trains (http://

pillowlab.princeton.edu/code_GLM.html), Mark Schmidt’s L1-

norm function L1GeneralGroup_Auxiliary.m (https://www.

cs.ubc.ca/�schmidtm/Software/thesis.html), and the multidi-

mensional histogram function histcn.m downloaded at http://
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www.mathworks.com/matlabcentral/fileexchange/23897-n-

dimensional-histogram/content/histcn.m.

SUPPLEMENTAL INFORMATION

Supplemental Information includes a zip file containing the MATLAB materials
and data and can be found with this article online at http://dx.doi.org/10.1016/
j.neuron.2016.05.039.
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