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Abstract

Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent
developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action
potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense,
recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the
result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which
can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by
the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of
cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent
connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In
addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological
parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally
produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity
may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period
contribute to critical wave size variability.
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Introduction

Throughout the nervous system, correlated spontaneous activity

drives developmental programs [1,2]. Within the retina, these

events manifest as slow, spreading waves of depolarizations and

are thus termed retinal waves. Waves are observed in a variety of

species and progress through three stages of development [3,4].

They have been implicated in numerous developmental processes,

including retinotopic map refinement [5] and the eye-specific

segregation of retinal projections into layers of the thalamus [6]. In

mammals, waves mediated by acetylcholine (cholinergic waves, or

stage II waves) are the best characterized. They exhibit a slow

wavefront velocity, random initiation site and direction of

propagation, an interwave interval (IWI) which lasts tens of

seconds, and constantly shifting wave boundaries. Precisely

determining their role in development requires a controlled

manipulation of these properties, which in turn requires a sound

theoretical understanding of the mechanisms responsible for their

generation. However, the complexity of their dynamics means that

determining the connection between the generation and resulting

spatiotemporal patterns of wave activity and underlying physiol-

ogy is by no means intuitive and is reliant on computational

modeling. This paper develops a biophysically consistent, yet

simplified, conductance based model of the developing retina that

is able to produce physiological waves, in order to elucidate this

connection.

Retinal waves are believed to be initiated by spontaneous

depolarizations of Starburst amacrine cells (SACs) whose processes

reside in the inner plexiform layer (IPL) of the retina. In mice these

spontaneous depolarizations are sparse: they occur roughly once

every 15 minutes per SAC [7], where as in rabbit the rate is closer

to once every 30 seconds. Following initiation, the dense, recurrent

connectivity of the SAC network laterally propagates activity

through cholinergic synapses [8]. After depolarizing, SACs exhibit

a slow after-hyperpolarization current due to a cyclic-AMP

sensitive, calcium-activated potassium channel [7,9], which

persists for tens of seconds. Consequently, waves propagate over

only a finite domain of the retina, with their boundaries

determined by regions still refractory from previous wave activity.

A number of computational studies have tested this wave

generation hypothesis, notably the models by Godfrey et al.
2007 [10], Hennig et al. 2009 [11] and subsequent study by Ford

et al. 2012 [7] (refer to the reviews Gjorgjieva and Eglen 2011 [12]

and Godfrey and Eglen 2009 [13] for more information on

previous computational studies).

A striking feature of retinal waves is their variety of sizes, speeds

and shapes, which differs from the more stereotyped behavior of

spontaneous activity in other developing brain regions, for

example in neocortex [14,15]. Despite numerous theoretical

studies, it is not clear what properties of the recurrent developing

SAC network most contribute to these spatiotemporal patterns.

Indeed, retinal waves sizes appear to be distributed according to a
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power-law [11], analogous to other examples of spontaneous

activity in the nervous system. In cortex, such activity has been

extensively studied as an example of a critical state phase-

transition [16]. Additionally, diffuse release of ACh has been

detected at the inner limiting membrane coincident with wave

activity [7], suggesting that, like later stage waves mediated by

glutamate [17], extra-synaptic diffusion may play a role in

cholinergic wave propagation, though this has not been tested

theoretically or experimentally.

In this work, we develop a theoretical, reaction-diffusion

framework that integrates the key biophysical processes, includ-

ing increased excitation due to acetylcholine diffusion and the

slow after hyper-polarization of the SACs, to characterize

spontaneous wave dynamics in the developing retina. This

provides a framework to address the above questions of critical

dynamics and mechanisms of wave generation and lateral

propagation. The model is consistent with the above described

mechanisms, but its purpose is to be as simple as possible while

still being able to capture the defining spatiotemporal properties

of retinal waves. We demonstrate the model is capable of

producing physiological waves, as observed in mice [7], after

which we address two questions. First, what are the conditions

for spontaneous activity in the amacrine cell layer to propagate

laterally as waves? We derive necessary conditions for propa-

gating activity using techniques from non-linear dynamics that

are made available through the use of a reaction-diffusion model.

These conditions are shown to be consistent with known

pharmacological and genetic manipulations. Second, once

conditions for propagation are met, what are the conditions

required for the spatiotemporal patterns of retinal wave activity

to take the form of avalanches, as observed in multielectrode

array recordings of stage II waves in a variety of species [11]?

This is answered by appeal to a model of critical behaviour in a

canonical model of forest fires.

Results

A physiological reaction-diffusion model of cholinergic
retinal waves

As in previous models [7,11], individual SACs are modeled

according to Morris-Lecar dynamics [18], with an additional

sAHP current activated by depolarization and subsequent calcium

influx. The sAHP current generates recovery times on the order of

a minute. Each cell is assigned the same recovery time scale, and

the dynamics are such that recovery is minimally activity-

dependent (Fig. 1A). Previous theoretical models [10,11] and

experimental observations [9] show that larger depolarizations

increase sAHP duration. The lack of a strongly activity-dependent

refractory period in our model does not affect the its ability to

generate physiological waves. A noisy, excitatory current induces

spontaneous depolarizations (Fig. 1B) at an average rate of once

every 15 minutes per isolated cell, consistent with recordings in

mice (Fig. 1C).

The dense synaptic connectivity of the SAC network and the

potential role for extra-synaptic transmission suggests that a

model based on local coupling between cells is appropriate. As

such, coupling between amacrine cells is modeled via the

volume release and diffusion of acetylcholine (ACh), and an

excitatory post-synaptic current dependent on the local

concentration of ACh. By taking a continuum limit of this

amacrine cell network, a reaction-diffusion model is thus

described (Methods). By modelling lateral excitation as a

diffusion process the model is mathematically tractable. It

should be emphasized that the diffusion of ACh is best thought

of as an effective diffusion process, representing the combination

of synaptic and extra-synaptic excitation through acetylcholine.

Below we will demonstrate the inclusion of long-range connec-

tions, in addition to local, ‘diffusive’, ones has minimal impact in

simulations.

The model is described in more detail in the Methods, but its

notation is established here. For a SAC located at x, its membrane

potential at time t is described by V (x,t). Three dynamic variables

regulate the membrane potential: A(x,t), the extra-cellular ACh

concentration which provides an excitatory current to the SAC;

S(x,t), a calcium-dependent potassium channel which provides an

inhibitory, slow after hyperpolarization (sAHP) current; and

R(x,t), an inhibitory potassium channel modeled as in the original

Morris-Lecar model. The vector

v~(V ,A,R,S) ð1Þ

then specifies the state of the system and obeys the following

dynamics

vt~f(v)zD+2v:

The matrix D is a diagonal matrix whose specified entries

indicate the diffusion coefficient of each dynamic variable

D~

0

D

0

0

0
BBB@

1
CCCA,

and whose blank entries represent zeros. The function f(v)
specifies the cell-intrinsic dynamics.

Author Summary

Both within the visual system and more generally, two
general processes describe nervous system development:
first, genetically determined cues provide a coarse layout
of cells and connections and second, neuronal activity
removes unwanted cells and refines connections. This
activity occurs not just through external stimulation, but
also through correlated, spontaneously generated bursts
of action potentials occurring in hyper-excitable regions of
the developing nervous system prior to external stimula-
tion. Spontaneous activity has been implicated in the
maturation of many neural circuits, however exactly which
features are important for this purpose is largely unknown.
In order to help address this question we construct a
mathematical model to understand the spatiotemporal
patterns of spontaneously driven activity in the developing
retina. This activity is known as retinal waves. We describe
a simplified, biophysically consistent, reaction-diffusion
model of cholinergic retinal waves capable of recapitulat-
ing wave dynamics observed in mice retina recordings.
This novel reaction-diffusion formulation allows us to
connect wave features to underlying physiological param-
eters. In particular this approach is used to determine
which features of the system are responsible for wave
propagation and for the spatiotemporal patterns of
propagating waves observed in both mice and other
species.

A Reaction-Diffusion Model of Cholinergic Retinal Waves
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Simulations show qualitatively that the model produces realistic

waves (Fig. 2A; Movie S1). Waves propagate without bias in their

initiation region or direction (due to the translational and

rotational symmetry of the equations), occur on average once

every 60 s, propagate at an average speed of 150 mm per second,

and exhibit a broad distribution of wave sizes, all of which are

consistent with in vitro recordings of mice retinal waves [7]

(Fig. 2B). The uniform distribution of initiation points is expected

given the homogeneity of the connectivities (diffusion coefficient)

of the model. Some studies show that both in vivo and in vitro
recordings contain a directional bias in propagation [19,20], which

could be modelled with a drift-diffusion model. However, since

there is presently no physiological model for how this directionality

occurs, we do not attempt to address these issues here.

The spontaneous firing of each cell is modeled as a Poisson process,

which makes it simple to fix the per-cell spontaneous activation rate to

be consistent with the recordings of Ford et al. 2012 [7]. The mean

firing rate is set to be low, such that adjacent spontaneous activations

are exceedingly rare, and hence waves are the result of a single SAC

depolarization. However, the mean rate is sufficiently high to

desynchronize the network, such that the correlation of activity of

neighboring SACs quickly decays as a function of distance (Fig. 2C).

Indeed, the correlation of both refractory variables (S and R) decays

faster than either the voltage or acetylcholine variables, indicating

neighboring SACs can exist in different refractory states and thus

exhibit variable participation in waves [7,11]. These features are

consistent with physiological waves observed in mice. Further, by

assuming a continuum model, the dimensionality of the dynamics can

be drastically reduced, when compared with a network model. This

feature is exploited in the following section.

Necessary conditions for wave propagation
Having established the model produces realistic waves, in this

section we determine under what conditions propagating activity

exists. For this note that previous studies predict that the evolving

mosaic of retinal wave activity is a result of the refractory period of

SACs, which delineates shifting boundaries of future wave activity

[7]. If previous wave activity is indeed responsible for the finite

spatial extent of retinal waves then, were the amacrine cell

network in a homogeneously recovered state, activity would spread

across the entire retina without dissipation. Under this hypothesis,

a prerequisite for the amacrine cell network supporting propagat-

ing retinal wave activity is thus that it should support traveling

wave solutions were it provided an infinite spatial domain at rest –

or that it should be an excitable medium.

To investigate parameters in which our retinal waves model is

excitable is this sense, the amacrine cell network is studied as a

non-linear reaction-diffusion system, in which we seek parameters

under which traveling wave solutions can be constructed. The

method is outlined briefly here, and described in further detail in

Methods. We take advantage of the fact that the voltage and

acetylcholine variables change on a faster timescale than either

refractory variables. Following a singular-perturbation analysis

outlined by Keener and Sneyd, 2001 [21], (treated in a number of

other texts also, e.g. Ermentrout and Terman 2010 [22]), the

dynamics can thus be broken into a fast and slow system:

vt~f (v,r,a),

rt~Eh(v,r,s),

st~Ehk(s,v),

at~+2az
k(a,v)

~ttACh

, ð2Þ

Figure 1. Isolated SAC dynamics. Starburst amacrine cells obey Morris-Lecar dynamics with voltage term V , refractory variable R, sAHP variable S
and acetylcholine concentration A. A. Time course of individual SAC dynamics following current injections of indicated size, injected at t~1s for
1.5 s (shown in grey). Model SACs’ refractory period shows dependence on amount of current injected. B. Single cell dynamics showing sparse
spontaneous depolarizations. Different colors represent different SACs. C. Distribution of inter-event intervals in stochastic simulation of isolated SAC.
A threshold of 250 mV was employed. Bar plot shows mean and standard deviation.
doi:10.1371/journal.pcbi.1003953.g001

A Reaction-Diffusion Model of Cholinergic Retinal Waves
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where the lower-case variables denote dimensionless quantities

corresponding to their upper-case equivalents of Equation 1.

Singular perturbation analysis is used to study systems for which

dynamics on more than one timescale need to be considered. For

such systems, attempting to find approximate solutions by

neglecting very fast or very slow components would result in an

incorrect description of the dynamics. Here, the parameter E
represents the ratio of the fast and slow timescales and is to be

considered small (for the default parameters used in simulations

E&0:001). The model requires singular perturbation techniques

because the small parameter affects the leading order derivative

terms. The fast-system models the dynamics during the jump from

the rest state to the excited (depolarized) state, or from the excited

state to the refractory state. In one spatial dimension +2~Lxx, and

the zeroth-order (E?0) dynamics are therefore

vt~f (v,r,a),

at~axxz
k(a,v)

~ttACh

:

In a moving frame with speed c(r), stationary solutions which

connect the rest and excited fixed points are heteroclinic orbits

which represent traveling front solutions. The basic idea of the

wave front construction is outlined in Fig. 3.

Parameters for which a heteroclinic orbit exists for a positive

speed c are parameters which support propagating activity.

Parameters at the transition between a propagating, positive

speed, traveling front and a receding, negative speed, traveling

front (that is, when c~0) represent an excitability threshold. Fig. 4

demonstrates this excitability threshold over a two dimensional

parameter space, computed using the above framework and, for

comparison, computed using numerical simulations of the model

Figure 2. Model produces realistic cholinergic waves. A. Network dynamics showing spatiotemporal patterns of retinal waves B. Distribution
of wave sizes, speeds, durations and inter-wave intervals from 2500 s of simulation. Mean wave size is 0.017 mm2(+0.059 mm2), mean wave speed is
0.11 mm/s (+0.022 mm/s), mean wave duration is 0.63 s (+0.90 s), and mean inter-wave interval is 49 s (+25 s). C. SACs exhibit variable
participation in waves. Pearson correlation coefficient between a cell in the center of the domain and all other cells. The correlation coefficient for
each variable is plotted as a function of euclidean distance between cells. Computed using one 2500 s simulation, with activity recorded every 0.1 s.
Solid curve represents a loess moving average estimate of mean correlation as a function of distance. Shaded region highlights all points within one
standard deviation of this mean curve.
doi:10.1371/journal.pcbi.1003953.g002

A Reaction-Diffusion Model of Cholinergic Retinal Waves
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for different values of E (the separation of fast and slow time scales).

The analysis and simulations exhibit the same general behavior.

The analysis method presented here is a more direct method for

determining wave propagation because it is not necessary to set up

and solve numerically a solution for each point in parameter space

to be queried. Refer to Methods for more detail on the numerical

simulations.

Both analysis and simulation demonstrate that excitability is

sensitive to the value of both maximal conductances gM
ACh and gM

Ca.

Further, excitability is independent of all aspects of the model not

involved in the fast dynamics. This means that neither the

spontaneous activation rate nor the duration of either refractory

variable have an effect on wave propagation. Indeed, this is

consistent with data presented in Ford et al. 2012 [7], which shows

manipulations affecting the strength of the sAHP current have

minimal effect on measured wave speed. In the sense defined here,

excitability is also independent of the diffusion coefficient D, as it is

scaled out of the dimensionless equations used to compute the

excitability thresholds. Thus, beyond assuming a non-zero

coefficient, the diffusion rate merely determines the speed at

which waves propagate. The existence of spontaneous, propagat-

ing activity in the developing retina is thus determined by factors

regulating individual SACs excitability and their synaptic strength.

It is important to understand that this analysis is only for the

case of a domain uniformly at rest. Of course, we would like to

consider the existence of waves within a medium that is not

uniformly recovered but for which some of the domain may be

refractory from previous activity. Our analysis provides a

necessary condition for the existence of propagating activity in

this more general case: a network incapable of supporting wave

propagation at rest is a network incapable of supporting wave

activity when some of its cells are refractory. In this more general

case, waves propagate not only if SACs are sufficiently excitable,

but also if neighboring SACs are sufficiently recovered from prior

depolarizations. The wave speed is then modulated by the

refractory state as well (e.g. Fig. 5).

Waves under physiological manipulations
The pharmacological or genetic manipulation of retinal waves

forms a major component of their experimental study. In this

section we show how two such common manipulations are

recapitulated by our model and use the above analysis to interpret

the effects of these manipulations. Using a biophysically inspired

model is beneficial since model parameters have clear, experi-

mentally determinable values.

Synaptic connection strength. We first investigate the effect

of nicotinic acetylcholine receptor (nAChR) agonists/antagonists

by varying the maximal synaptic conductance gM
ACh (see Methods

for definition). Our analysis shows both the wave speed at rest and

the wave speed as a function of refractory state R are highly

sensitive to changes in gM
ACh (Fig. 5A). A 25% reduction in gM

ACh

lowers the C(R) curve significantly, making the medium less

excitable and waves more easily blocked by encounters with

refractory cells. This manifests in simulations as a reduction in

wave size, and a change in the inter-wave interval: from sharply

peaked at a mean of approximately 50 s to a monotonically

Figure 3. Construction of traveling wave-front. A. Fast-slow dynamics in the canonical Fitzhugh-Nagumo model of action potential generation.
Black curve represents a trajectory of an action potential through phase space, in which a fast transition occurs between the rest (blue dot) and
excited state (green dot), followed by slow excited dynamics (green to purple dot), another fast transition between the excited and refractory state
(purple to yellow), and slow dynamics while refractory (yellow to black). Red arrows represent flow lines, and the blue curve is the V~0 nullcline
which defines the slow manifold (R~0 nullcline not drawn for clarity). B. The fast system here is described by three dynamical variables (v, a, and
b:a’). Shown here is the trajectory connecting the rest (blue) and excited (green) fixed points, defining the wavefront. C. Temporal voltage dynamics
of the wave front.
doi:10.1371/journal.pcbi.1003953.g003

Figure 4. Parameter regimes which produce propagating
activity. Numerical determination of retinal wave excitability threshold
for different timescales E and excitability threshold determined through
singular perturbation analysis, both as functions of gACh, gCa. Each point
on each curve indicates a point in parameter space in which the
wavefront transitions from propagating to receding. Points in
parameter space below each curve are therefore not excitable, while
those above are excitable.
doi:10.1371/journal.pcbi.1003953.g004
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decaying function similar to the individual SAC spontaneous firing

rate (Fig. 1), indicating that wave activity is localized and

activations are primarily caused by spontaneous activity, not wave

activity. This is indeed observed in pharmacological studies of

mice, chick and turtle retina [23–25], which produce both a

decrease in wave frequency and a decrease in wave size following

treatment with nAChR antagonists.

Additionally, a study by Xu et al. 2011 [6] used transgenic mice

in which only about half of SACs express functional nicotinic

acetylcholine receptors, which reduces the effective coupling of the

network. In these mice, wave frequency and speed were

unchanged, whereas wave size was significantly reduced, as the

analysis of our model predicts.

Conversely, a 25% increase in gM
AChresults in an increase in

wave speed both from rest and as a function of refractory state,

indicating that wave activity is more robust and less likely to be

blocked by encounters with refractory cells. Indeed, in simulations

this results in an increase in wave size and a more frequent and

sharply peaked inter-wave interval distribution.
Modulation of sAHP current. We also investigate the effect

on waves from varying the sAHP current. Experimentally, this is

achieved through stimulating the cAMP second-messenger path-

way via forskolin. We study this effect by varying the sAHP

timescale tS . Since tS does not effect the fast time scale dynamics,

our singular perturbation analysis does not provide insight into

how tS effects wave speed or propagation. However, using the

model’s excitability criteria does allow us to compute the duration

of an absolute refractory period, which is the length of the period

in which activation, either spontaneous or through incident wave

activity, results in subsequent a refractory state that does not

support a propagating wave. This period is shown to be on the

order of 30 seconds, in accordance with experimental findings

[25]. (Fig. 5B)

Retinal wave simulation does show how tS affects wave

properties. An increase (respectively decrease) in tS results in an

increase (respectively decrease) in the interwave interval and a

minimal change in wave size and wave speed (Fig. 5B). The

reduction in IWI is expected given the decrease in absolute

refractory period. The minimal change in wavespeed is also

expected. Further, the moderate changes in tS presented here

should not affect significantly the wave size (larger changes in tS

through which different wave behavior regimes are explored are

investigated below). These results agree with the study of Ford et
al. 2012 [7], which found that treatment with 1 mM of forskolin

resulted in roughly a 50% reduction in IWI, and only a moderate

reduction in wave speed. The same increase in wave frequency

and decrease in underlying sAHP current are also observed in

ferrets and rabbit [9,26].

Recently, Ford et al. 2013 [27] proposed that the sAHP current

is established by the two-pore potassium channel TREK1. In this

study TREK1 knockout mice are shown to exhibit retinal waves

with a significantly reduced (approximately halved) interwave

intervals. The present model, in which wave frequency is shown to

be increased by a reduction of the timescale of sAHP recovery, is

consistent with these findings.

It is possible the effect of forskolin is on the strength of the sAHP

current, not on its decay rate, thus we also investigated the effect of

changing the strength parameter a, which determines how

sensitive each SAC is to the slow refractory state S. The effect

was comparable to varying tS – a decrease in wave frequency and

slight change in wave speed and size following an increase in a
(Figure S3).

In summary, the preceding sections have demonstrated that our

model produces physiological retinal waves, and that the existence

of propagating activity can be understood by studying the model

as an excitable medium. This allows for the effect of common

genetic and pharmacological manipulations to be predicted.

Spatio-temporal patterns of propagating activity
We now turn our attention to a second question: given

parameters in which propagating activity exists, what model

Figure 5. Modeling biophysical manipulations. A. Synaptic connection strength gM
ACh is varied. Sub plots from left to right: speed of wave front

c(R0) at rest (when R~R0) as a function of conductance gM
ACh, velocity indicates maximum wave-front speed since R§R0 and C(R) is monotonically

decreasing, point at which c becomes zero represents excitability threshold; wave-front speed as function of refractory variable R for three different
values of gM

ACh; from 5000 s of simulation of model with indicated values of gM
ACh interwave-inteval; wave speed distribution; and mean wave size. B.

Sub plots from left to right: dynamics of refractory variable R of individual SAC following depolarization with different sAHP timescales tS , black line
indicates refractory value above which C(R)ƒ0 and thus represents an absolute refractory time period in which SAC is not sufficiently excitable to
participate in future wave activity; from 5000 s of simulation of model with indicated values of tS inter-wave interval; wave speed distribution; and
mean wave size.
doi:10.1371/journal.pcbi.1003953.g005
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parameters determine their form? Indeed, the spatiotemporal

patterns of cholinergic retinal waves are often similar, despite

differences in a range of physiological parameters, in a range of

species. How is this similarity of form maintained given variations

in physiology? Given parameters in which propagating activity

exists, this section addresses the nature of the resulting spatiotem-

poral patterns. Hennig et al. 2009 [11] notes that, both in MEA

recordings and computer simulation, physiological waves take the

form of avalanches, or power-law sized events. Thus it has been

proposed that the developing amacrine cell network is in a

critically configured state – a transition between a locally and

globally connected network. Such neuronal avalanches have been

observed and extensively studied in the both in vitro [28] and in
vivo [16] cortex.

Here, we make an analogy between retinal waves and a model

of self-organized criticality (SOC) [29], allowing us to determine

for which parameters avalanches may be observed. A well-studied

example of a complex system potentially demonstrating self-

organized criticality is the Drossl-Schwabl forest fire model (DS-

FFM) [30,31], imagined as a grid in which each unit is either

occupied (by a tree), ignited (burning tree), or empty (ash, burnt

tree). At each discrete time step: 1) an occupied grid point

spontaneously ignites with probability f , 2) burning trees ignite

their occupied neighbors, 3) burning trees become empty and 4)

empty sites regrow a tree with probability p: The analogy between

the forest and the retina is clear: amacrine cells spontaneously fire

at some rate and excite their nearest recruitable neighbors to also

fire, after which these cells experience a slow recovery time, which

proceeds at some average rate.

For a simulated lattice of n2 cells, representing L2mm2 of retina

(in our simulations n~64 and L~2mm), a simple heuristic

derivation shows a relationship between f and p of the DS-FFM

and the retinal wave model parameters:

f ~
pn2c2t2 f̂f

L2
, p~

t

r
,

for wave speed c, a per cell spontaneous firing rate f̂f , burst

duration t, an effective refractory period r, and length of domain

L. These values are determined either directly from model

parameters (f̂f , L, n), from the model analysis (c and r), or from

simulation (t).

The heuristic derivation is as follows: to estimate f and p from

retinal wave simulations, and relate it to the DS-FFM, we rescale

time and space so that one time unit is the duration of a burst during

wave activity (t); in this way after one time unit every active grid

point is now refractory. And rescale space such that the area of one

‘lattice point’ is the area covered by all grid points excited as a result

of one point spontaneously firing (initiating a wave) (pc2t2); in this

way, during one time unit, an active lattice point induces the nearest

(and only the nearest) excitable lattice points to become active.

When scaled in this way, the dynamics of our retinal wave

simulations approximate the dynamics described by the rules of the

DS-FFM. The probability of ‘regrowth’ (recovery) is p~t=r, and

the probability of a lattice point spontaneously firing is assumed to

be the probability of a single simulated cell firing, multiplied by the

number of cells that are included in that lattice point (pc2t2n2=L2).

In the DS-FFM, SOC is expected when [30]

(f =p){1=2%p{1%f {1,

or, for the present model, when

pn2c2tf̂f r

L2

" #{1=2

%
r

t
%

L2

pn2c2t2 f̂f
: ð3Þ

In this regime, retinal wave, or forest fire, sizes are characterized

by a power-law distribution with scaling exponent of approx-

imately h~{1:15 (simulation based [32], theoretical based

[33,34]). Parameters which have the largest and most direct

impact on f and p are the per cell spontaneous firing rate f̂f , and

the slow refractory variable tS (refer to Fig. 5): these are the

parameters which best determine when criticality may be

observed. Fig. 6 demonstrates that, within the region described

by Equation (3), wave sizes distributions approximately follow a

power law with an estimated exponent close to the expected

h~{1:15. Conversely, simulations performed outside this

parameter region are sub-critical and do not follow an approx-

imate power-law. The same behaviour is observed when the

distribution of wave duration (or lifetimes) are considered (Figure

S4). This is further made clear by looking at the correlation in

voltage activity between cells of a given distance from one another

(Fig. 6C). Parameters for which power-laws are observed produce

an initially high, but sharply decaying correlation function, while

the sub-critical parameter set produces significantly less correlated

activity. This is indicative of the smaller, more localized wave

activity expected in a sub-critical system.

The relationship between the rate of spontaneous firing f̂f , and

the slow refractory variable tS , dictates whether the network exists

in a critical state. This simple inverse relationship (Fig. 6) can

explain how robust waves with similar spatiotemporal character-

istics exist in very different parameter regimes. Experiments in

mice indicate that SACs depolarize infrequently but exhibit sAHPs

lasting as long as two minutes [7], whereas experiments in rabbit

[9] show a spontaneous depolarization rate an order of mangitude

higher and sAHPs that are substantially shorter. While these two

systems have cellular parameters that differ on an order of

magnitude, their collective network activity is very similar. This

can be explained by the fact that the ratio of f̂f to tS is conserved

across species.

This analysis can thus be used to predict, given particular

parameters for a particular species, whether or not the wave-size

distribution will be critical or sub-critical. Further, since both

parameters varied here, f̂f and tS , have no bearing on the

excitability of the medium, the analysis of the spatio-temporal

patterns of the amacrine cell network separates neatly into two

stages. Firstly, if the medium is not excitable then only small,

localized activity is expected. If the medium is excitable then,

secondly, the spatio-temporal patterns expected will depend on the

value of both f̂f and tS , as discussed here.

Discussion

Comparison to previous studies
Close collaboration with experimentalists means computational

modeling of retinal waves has been notably successful (refer to the

reviews Gjorgjieva and Eglen 2011 [12] and Godfrey and Elgen

2009 [13]). Models have helped identify SACs as the cell layer

which both initiates and laterally propagates waves [35], and have

highlighted the importance of an activity-dependent refractory

period to the generation of physiological waves [10]. Most

recently, the models of Hennig et al. 2009 [11] and Ford et al.
2012 [7] (henceforth referred to by their first authors) have
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investigated how the cell-intrinsic spontaneous firing rate and the

duration of each cell’s refractory period contributes to physiolog-

ical waves.

Godfrey and Hennig both propose the importance of a

refractory period that scales with the degree of excitation. The

Godfrey model was deterministic, and thus was reliant on the

activity dependent refractory periods to make the dynamics

chaotic and therefore consistent with observed waves – variable in

size, and with shifting wave boundaries.

In the Hennig model, the competition between the synchroniz-

ing force of waves and the desynchronizing force of spontaneous

activity is balanced at physiological wave parameters. This was

adjusted in the Ford model to match the observed low

spontaneous activation rate observed in mice SACs. Physiological

waves were then only observed when each cell’s refractory time

scale was allowed to vary randomly (a hypothesis also pursued in

Feller et al. 1997). Ford hypothesizes that this cell to cell variability

is thus a necessary component of the developing amacrine cell

network.

We find that neither hypothesis is necessary in producing

realistic waves – our model does not contain an activity-dependent

refractory variable or cell to cell variability in parameters. Our

model is stochastic, consisting of sparse spontaneous depolariza-

tions with enough strength to initiate a wave by themselves. These

strong, sparse depolarizations are sufficient to induce variability in

refractory periods. It remains to be shown how this might change

in other species whose spontaneous depolarization rate is much

higher, and in which cell-cell variability or activity-dependent

refractory periods may play a more important role.

Experimental validation of the model
The model makes several predictions. Firstly, it provides a way

to systematically investigate the effect of different parameters on

both wave propagation and spatiotemporal patterns. One way to

confirm the model experimentally would then be to match (more

closely than was able to be performed in the present study) the

parameters of the model to observed wave statistics such that in a

quantitative fashion the effect of particular pharmacological

manipulations (e.g. nAChR antagonists) could be reliably repro-

duced. The test would then be to predict the outcome of a different

pharmacological manipulation (e.g. cholinesterase inhibition) that

the model was not calibrated against.

A simpler validation would be the following: a prediction the

model makes is that certain parameters affect only the existence of

propagating activity, while certain parameters affect only the form

of that propagating activity (power-law distributed or otherwise).

Thus manipulations that affect only parameters within one of these

classes should have no effect on behaviours determined by

parameters in the other class. For instance, the only effect changes

to parameters of the sAHP current, according to our analysis, is on

the form of the activity – spiral waves, large domain-covering

waves, etc – not on their existence.

Finally, the model predicts the existence of power-law

distributed activity within a particular parameter range based on

an analogy to a forest fire model. There are many different models

of self-organized critical systems which have slightly different rules

and slightly different statistics, and it is not clear that the forest fire

model indeed is the best analog. These different models exhibit

different sub-sampling artifacts, when only a subset of cells are

observed, and these effects thus provide a way of teasing apart

different SOC candidates [36]. Examining sub-sampling effects in

our model’s simulations, and in high-density recordings of in-vivo
or in-vitro retinal waves, would provide a way of determining

which model exhibiting criticality is most appropriate.

On the extra-synaptic diffusion of ACh
Previous retinal wave studies have hypothesized an extra-

synaptic agent as responsible for wave propagation: Burgi et al.
1994 [37], for instance, noted that the relatively slow wave speed is

consistent more with an extra-synaptic agent than either gap

junction or direct synaptic stimulation, and proposed extracellular

potassium as a source of lateral excitation. This particular

hypothesis was later discredited. However diffuse action of ACh

within the IPL has been observed coincident with wave activity,

suggesting that the volume transmission of acetylcholine may

instead play a role [7,38]. Thus, although direct recurrent synaptic

connections between SACs both in mice and in rabbit have been

observed [7,8], there is evidence that the diffuse release of ACh is

responsible for wave propagation: synaptic currents recorded

during waves last several seconds beyond depolarization, suggest-

ing excitation via an extra-synaptic agent; and retinal waves drive

ON and OFF RGCs [39] and cells in the inner nuclear layer [40],

despite the restricted stratification of SAC processes within the IPL

that do not form direct contacts with all cells, again suggesting

propagation via volume transmission.

It is worth pointing out that extra-synaptic neurotransmission is

observed throughout the developing nervous system to produce

correlated spontaneous activity, and thus may be a general

phenomenon regulating a diverse range of developmental

programs. This may happen when the development of neuro-

transmitter release through synaptic vesicle fusion precedes the

expression of the uptake transporters and breakdown enzymes

Figure 6. Power-law distributed wave-size retinal waves. A. Parameter space in which avalanches are expected (gray, Equation 3) and three
sample points B. Wave size distributions (points) following 5000 s of simulation on a 128|128 domain for specified values of tS and f {1. Solid lines
represent log-linear least-squares lines of best fit, having slopes: h~{1:45 (R2~0:95, green), h~{1:01 (R2~0:95, red) and h~{1:14 (R2~0:95,
blue) C. Correlation in membrane potential between cells of a given distance apart.
doi:10.1371/journal.pcbi.1003953.g006
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required to prevent spillover into the extra-cellular space. For a the

review of the role of extra-synaptic stimulation in generating

spontaneous activity refer to Kerschensteiner 2013 [41].

The role of volume transmission has been explored in cortex

[42], hippocampus [43], as well as extensively in stage III

(glutamatergic) retinal waves [17,44,45]. In stage III waves

extra-synaptic glutamate mediates lateral connections between

bipolar cells.

The model presented here represents a theoretical validation

that volume release of ACh is able to mediate stage II retinal

waves. However, further experimental validation is needed beyond

the above observations and this model. It should therefore be

emphasized that the motivation of writing a model based on

diffusion of acetylcholine is not to test the role of volume

transmission. The dense lateral connectivity observed between

SACs (synaptic or otherwise) means that lateral excitation is well

approximated by a diffusion process – the model’s diffusion of

acetylcholine should be interpreted as a phenomenological, or

effective, diffusion, not as a literal diffusion process based on the

net Brownian motion of molecules which allows for singular-

perturbation analysis to be performed.

Indeed, the extent of a SAC’s arborization is only approxi-

mately 100 microns, so that even if synaptic terms were explicitly

included their connectivity would be well-modelled by a short-

range Gaussian weight function similar to the Gaussian kernel that

results from modelling interactions as occurring through a

diffusion process [46]. The only cells in the retina with long range

connections are other types of GABAergic amacrine cells, which

do not alter waves since GABA antagonists play a minor role in

shaping the spatiotemporal features of waves. For these reasons

models with long-range connectivity were not pursued in this

study.

Stage II retinal waves and development
Retinal waves are one example of spontaneous activity in the

nervous system instructing developmental processes. A number of

processes appear to rely on the activity generated by retinal waves.

Indeed, they have been shown to coordinate activity throughout

the visual system [19]. In animals in which waves are blocked, the

formation of the retinotopic map [47], the separation of

retinogeniculate projections into eye-specific layers of the LGN

[6], and the formation of ocular dominance and orientation

selectivity [5] (and references therein) are all adversely effected.

Retinal waves are thus believed to provide a naturalistic

stimulus from which downstream connections can be refined

and stablized. However, it remains unclear how important the

spatiotemporal patterns of the activity are, or whether any activity,

regardless of its properties (size, speed, typical shape), would suffice

to provide input for correct development to occur. Hennig et al.
2009 [11], for instance, suggests that the critical form of the retinal

waves are a useful feature, because, by definition, critical-state

activity consists of events possessing no intrinsic length scale, they

thereby provide an input without bias to any particular feature

length. Godfrey et al. 2009 [48], on the other hand, investigates

this question explicitly in a model of retinotopic map refinement

and finds that the only feature which affects the degree of

refinement is the spatial correlation activity function – the size,

speed and frequency of the waves otherwise had no effect.

If correlation structure of retinal activity is the main factor

regulating downstream developmental processes, then how is this

structure dependent on the spatiotemporal properties of retinal

waves? Are scale-free, critical ‘avalanches’ the only form of activity

that provide the necessary correlation structure? In other areas (i.e.
cortex), a network operating at a critical state can be shown to be

optimal for information processing, and for maintaining a high

dynamic range [49,50]: there is some functional role for criticality

(as discussed in Shew and Plenz 2013 [51]), but its significance

remains controversial [52]. Retinal waves provide a useful study

into the functional role of criticality, as they occur within well

defined and understood circuitry where the above questions can be

asked and thus critical activity can (potentially) be assigned a

specific developmental role.

Self-organized criticality
Our study focused in particular on a forest fire model

extensively studied in the context of complex systems and critical

phenomena for its potential demonstration of self-organized

criticality (SOC). This connection between correlated activity

within the central nervous system and the DS-FFM has been noted

before (e.g. Buice and Cowan 2009 [53]). The DS-FFM model is

not without its issues: while initial theoretical results [30,33]

provided justification for numerically observed scaling behavior,

subsequent, more extensive, numerical analysis [32] demonstrate

the power-law scaling behavior to be transient and not reflective of

the ‘true’ asymptotic behavior. Indeed, a variety of scaling

parameter (t) estimates have been observed for different parameter

values and lattice sizes (refer to the summary presented in

Pruessner 2012 [54]).

In theory, critical behavior is expected as the ratio h~f =p tends

to infinity. However, this limit corresponds to lightning strikes

becoming increasingly rare, such that in simulations, for

sufficiently large h, strikes are rare enough that the entire domain

recovers by the time the next strike hits, and the resulting

dynamics are simply that the fire spreads across the entire domain.

Thus, in practice, critical behavior is to be expected when h is

large, yet the characteristic length scale remains small compared to

the lattice size. In addition to this behavior, for sufficiently large p

values spiral wave fronts are observed [55]. These behaviours –

propagating ‘critical’, stationary rotating spirals and radially

symmetric domain-covering waves are the three regimes of

spatially extending activity observed in simulation of the present

model, and as classified in previous models [56]. The latter two

behaviours are likely to occur in parameter regimes where the

spontaneous activation rate is sparse, thus creating large scale

structures, and where, relative to the wave-front speed, the rate of

recovery is either too fast (spiral waves) or too slow (domain-

covering radial waves). Though more systematic study is needed in

these cases, we argue the principle value of the analogy to the DS-

FFM is not evidence of critical behavior in the developing retina

(as it is not clear the DS-FFM is critical in a strict sense), but is the

insight it provides into when and how these different regimes will

be observed.

Wider context
This work shows that a model based on lateral excitation

through the diffusion of ACh can account for physiological retinal

waves, and can predict how wave dynamics consequently depend

on biophysical parameters. Specifically, by determining when the

retinal network is excitable and through analogy to a canonical

forest-fire model, the spatiotemporal patterns observed in different

parameter regimes can be understood. This framework is shown to

be consistent with previous experimental studies.

We note that the nature of this analysis is novel: the singular

perturbation and traveling front construction analysis presented

here has not been extended before, from the well studied and more

stereotyped waves studied in cortex, to the considerably more

complicated wave behavior observed in the developing retina.

A Reaction-Diffusion Model of Cholinergic Retinal Waves

PLOS Computational Biology | www.ploscompbiol.org 9 December 2014 | Volume 10 | Issue 12 | e1003953



A number of avenues for future work present themselves. First,

the reaction-diffusion component of the model can be naturally

applied to glutamatergic waves, for which there is more significant

evidence that diffusion is indeed a key excitatory process.

Mechanistic models of stage III waves have recently been

developed [44,45], and would benefit from computational

modeling to establish their validity. It is proposed in stage III

waves that lateral excitation occurs via the diffusion of extra-

synaptic glutamate released by bipolar cells in the ganglion cell

layer, and that GABAergic connections from amacrine cells to

bipolar and ganglion cells provides a source of inhibition that is

absent during stage II waves. Changes to the present model to a

model of stage III waves would therefore be significant, however

the framework to both analyze and simulate the resulting model

would remain the same.

Second, the connection between between criticality and

development can also be explored in much more depth than

was performed in this study.

We believe the approaches developed here may also be applied

to other forms of spontaneous and correlated activity in the

nervous system.

Models

The model
SACs are assumed to obey dynamics based on a Morris-Lecar

[11] model, which includes a quasi-stationary voltage dependent

calcium conductance. The voltage dynamics are described by

CmVt~{gCa(V{VCa){gK (V{VK ){gM
L (V{VL)

{gACh(V{Vsyn){gM
n N(V{VCa),

where

gCa(V )~
1

2
gM

Ca 1z tanh
V{V1

V2

� �� �
,

gK (R)~gM
K R,

L(V )~ cosh
V{V3

2V4

� �
,

R?(V )~
1

2
1z tanh

V{V3

V4

� �� �
,

are the standard Morris-Lecar auxiliary functions. The model also

includes an ACh conductance (gACh(A)) which depends on the

local concentration of acetylcholine (A):

gACh(A)~gM
ACh

dA2

1zdA2
:

Additionally, a slow AHP variable (S) is activated according to a

voltage-dependent function G(V ) with time scale tACh:

St~cG(V ){
S

tS

G(V )~
1

1z exp ½{k(V{V0)� :

The sAHP variable enters the dynamics through its effect on

refractory variable R as follows

tRRt~L(V )(R?{R)zaS(1{R),

where L(V ) is defined above as part of the Morris-Lecar

equations.

Cells are indexed by a continuous spatial parameter x
such that the state space is described by the tuple

(V (x,t),R(x,t),S(x,t),A(x,t)), where V (x,t) is the membrane

potential. On spiking, cells release ACh at a voltage dependent

rate bG(V ) which diffuses with coefficient D:

At~D+2AzbG(V){
A

tACh

G(V )~
1

1z exp ½{k(V{V0)� :

Coupling between SACs occurs only through the diffusion of

ACh.

To induce spontaneous depolarizations, a noisy, excitatory

current is included in simulations:

gM
n N(V{VCa),

where at each time-step N is a Bernoulli random variable

(N*B(1,p)). Refer to Table 1 for the parameter values used. The

value of p is chosen such that the mean waiting time between

sponataneous noisy channel openings matches approximately the

rate of intrinsic spontaneous bursts observed in mouse retina

recordings [7].

Computational methods
Numerical integration was performed using a time-splitting

method, in which the diffusion term was computed using a locally

one dimensional Crank-Nicolson method and the reaction term

was computed using a two-stage Runge-Kutta method. Simula-

tions were computed in MATLAB (version 7.14.0; R2012a.

Natick, Massachusetts: The Mathworks, Inc., 2012) using a 64664

grid with a fixed step size of 1 ms. The stochastic conductance

variable was updated every 10 ms. Simulation data used in

statistical analysis was from 2500 s of simulation on a 4 mm2

domain (L~2mm), following a 500 s warm-up period. The

dimensions chosen mean that one grid point has a length of

approximately 30 mm – roughly the density of SACs in the inner

plexiform layer [56]. Simulations were performed on a dual 6-core

Intel Xeon 3.07 Ghz machine with 24 GB RAM, running Ubuntu

12.04. MATLAB code to run simulations is available for download

at: https://github.com/benlansdell/retinalwaves.

Simulation statistics
Statistical analysis is performed as follows: snapshots of the

simulation are taken every 10 time steps (10 ms). To remove

boundary effects, grid points 5 units or less from the boundary are
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not considered for analysis. All grid points whose potential is above a

threshold of 260 mV are labeled as active. All active points

adjacent to one another are assigned a common wave number. For

each set of cells assigned that number: the time from the first active

cell to the last active cell is its wave duration, and the total number of

cells is its size. The wave speed is calculated as in Blankenship et al.
2009 [17]: the wave initiation and termination points are identified

and the path the wave front travels between these two points is

computed. This allows the maximum wave front speed for that

wave to be computed, and the distance this wave front travels

divided by the wave duration gives an average wave speed. To give

better estimates of the wave front speed, waves which involve the

activation of fewer than 50 cells or whose duration is less than 1 s

are ignored, and waves which do not have a distinct initiation point

and are therefore the result of two waves colliding are also omitted

(Figure S1). The interwave-intervals are computed by considering

all above threshold wave activity, collisions or otherwise, and, for

each grid point, measuring the time between successive threshold

crossings. A minimum IWI of 2 s was imposed.

A note on thresholds and smoothing voltages
Previous models of retinal waves consisted of two layers: an

amacrine cell layer, which initiated and laterally propagated

activity, and a ganglion cell layer, which acted as a smoothed ‘read

out’ layer [35]. Subsequent models did away with the ganglion cell

layer, and modeled only SACs [10,11]. However, without this

read-out later, wave analysis based directly on thresholding SAC

potentials is noisy, making wave front tracking more difficult and

wave ‘collisions’ more common. In order to compare simulated

waves to recorded waves, Godfrey et al. 2007 [10] thus compute a

calcium response variable, in which wave fronts are smoothed.

Our simulations (Fig. 2A), and experiments [7] show highly

variable participation in wave activity on a cell-cell basis. Thus to

compare our simulations to calcium imaging data, which is based on

filtered RGC activity, we lower the threshold for which a cell is

counted as participating in a wave to the ACh release threshold (near

255 mV), instead of its spiking threshold. This thus reflects the

‘general excitation’ of the region, not individual SAC activity, which

makes it better suited for comparison with calcium imaging data.

With this threshold, smoothing our data did not have a significant

effect on wave labeling, so was not implemented (Figure S2).

Bifurcations
AUTO [57] was used for the numerical continuation of

traveling fronts and bifurcation analysis.

Mathematical analysis
In order to analyze the model we first perform non-

dimensionalisation, the parameters and scalings are outlined in

Table 2. Non-dimensional dynamic variables are named in lower-

case. To non-dimensionalise we make the following change of

variables:

V~VCav, R~r, A~tAChba, S~tScs

and scale time (dimensioned quantity here denoted by a capital T )

and space (capital X ) such that

T~
Cm

gM
K

t, X~

ffiffiffiffiffiffiffiffiffiffiffi
DCm

gM
K

s
x:

Then:

vt~{~ggCa(v)(v{1){r(v{vK ){~ggM
L (v{vL){~ggACh(a)(v{vACh),

rt~
1

~ttR

½l(v)(r?(v){r)z~aas(1{r)�,

st~
1

~ttS

(g(v){s),

Table 1. Parameters for retinal waves model.

Parameter Value Parameter Value

Cm 0.160 nF V2 20 mV

VCa 50 mV V3 225 mV

VK 290 mV V4 40 mV

Vsyn 50 mV k 2

VN 50 mV k 0.2 mV{1

VL 270 mV V0 240 mV

gM
ACh

2 nS D 0.01 mm2s{1

gM
Ca

10 nS b 5 nM:s{1

gM
K

30 nS d 800 nM{2

gM
L

3 nS tR 5 s

V1 220 mV tACh 0.2 s

Vn 50mV tS 60 s

a 2 m 5

L 2 mm c 0.3 s{1

Dimensioned parameters used in numerical simulations unless otherwise specified in text. The chosen length of domain (2 mm) and a simulation of a 64|64 square
lattice corresponds to approximation one SAC per grid point assuming an average distance between SACs of approximately 30 microns.
doi:10.1371/journal.pcbi.1003953.t001
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at~+2az
1

~ttACh

(g(v){a),

with

g(v)~
1

1z exp ½{~kk(v{v0)�

~ggCa(v)~
1

2
~ggM

Ca 1z tanh
v{v1

v2

� �� �

~ggACh(a)~~ggM
ACh

~dda2

1z~dda2

l(v)~ cosh
v{v3

2v4

� �

r?(v)~
1

2
1z tanh

v{v3

v4

� �� �
:

To proceed, let E~1=~ttR, Eh~1=~ttS and a~p

f (v,r,a)~{~ggCa(v)(v{1){r(v{vK ){~ggM
L (v{vL){~ggACh(a)(v{vACh),

h(v,r,s)~
1

~ttR

½l(v)(r?(v){r)z~aas(1{r)�,

k(x,v)~{xzg(v),

to give:

vt~f (v,r,a),

rt~Eh(v,r,s),

st~Ehk(s,v),

at~+2az
k(a,v)

~ttACh

, ð4Þ

which we analyze as a fast-slow system as is standard (refer to

Ermentrout and Terman 2010 [22], or Keener and Sneyd 2001

[21]). The methods described below make no attempt to rigorously

establish the existence of traveling fronts or waves.

Wave fronts
This scaling of space and time is appropriate in regions where

the diffusion term is relevant, thus the system obtained by letting

E?0

vt~f (v,a; r),

at~+2az
k(a,v)

~ttACh

, ð5Þ

provides an approximate description of the wave fronts and backs.

The variable r is here considered a parameter. To construct wave

front solutions in one spatial dimension, change coordinates to a

frame moving with speed c:

x’~x{ct, t’~t

so that

vt’{cvx’~f (v,a; r),

at’{cax’~+2az
k(a,v)

~ttACh

:

Table 2. Dimensionless parameters for retinal waves model.

Parameter Relation Value Parameter Relation Value

vK VK=VCa 21.8 v0 V0=VCa 20.8

vACh VACh=VCa 1 v1 V1=VCa 20.4

vL VL=VCa 21.4 v2 V2=VCa 0.4

�ggCa gM
Ca=gM

K
1/3 v3 V3=VCa 20.5

�ggACh gM
ACh=gM

K
1/15 v4 V4=VCa 0.8

�ggL gM
L =gM

K
1/10 ~kk kVCa 10

1
~ttR

Cm=(tRgM
K ) 0.001067 ~DD (CmD)=(gM

K L2) 1.333|10{5

1
~ttACh

Cm=(tAChgM
K ) 0.02667 ~dd dt2

AChb2 800

1
~ttS

Cm=(tSgM
K ) 8.88|10{5 ~aa atSc 36

Dimensionless parameters used in analysis of model and their values.
doi:10.1371/journal.pcbi.1003953.t002
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A traveling front corresponds to the stationary solutions:

0~f (v,a; r)zcv’zEv’’,

0~ca’za’’z
k(a,v)

~ttACh

: ð6Þ

where 0~
d

dx’
. A bounded wave front solution, if it exists,

corresponds to a heteroclinic orbit connecting the rest fixed point

to the excited fixed point of Equation 6. In order to obtain this

heteroclinic orbit, Equation 5 was simulated in MATLAB with a

sigmoid function connecting the rest and excited fixed points for

initial data. Once the solution had sufficient time to converge to

the traveling front solution, its profile was saved, its wave speed

calculated, and these two pieces of data put into the AUTO

subpackage homcont to perform continuation on the system

described in Equation 6. This allows for the computation of c(r) –

the wave speed as a function of refractory state.

Excitability thresholds
We seek to determine when the medium is sufficiently

excitable to support a traveling front solution. In two variable

neuronal systems such as Fitzhugh-Nagumo or Morris-Lecar, in

which case the fast dynamics are one dimensional, an energy

argument can provide conditions under which the medium is

excitable (e.g. Ermentrout and Terman 2010 [22]). This is not

possible since the fast dynamics are here two dimensional. So, let

r0 be the unique fixed point of Equation 4. We aim to find

parameters for which c(r0)w0, which, assuming the front we are

studying is excited to the left and at rest to the right, will

correspond to a propagating front. Parameters for which c(r0)v0
will generate a receding front, and thus parameters for which

c(r0)~0 corresponds to the transition between excitable and not.

This is found using AUTO.

These results are compared to model simulations without the

noise channel. The simulations are performed for different

parameters for a simulated time of 10 s, with an initial condition

in which the domain is at rest besides a small cluster of grid points

on one side of the domain. Excitability is determined by measuring

if activity above an ‘excited’ threshold is observed on the other side

of the domain – from which we infer that a wave must have

traversed the simulated retina.

Relation between one dimensional analysis and two
dimensional simulations

Our analysis is performed in one spatial dimension only.

Moving to two dimensions has the following effect: the Laplacian

in radially symmetric polar coordinates is

+2~
L2f

Lr2
z

1

r

Lf

Lr
,

which, for large r, approximates the one dimensional Laplacian

operator. Thus we expect, for waves of large radius, the results we

find for one spatial dimension will apply. Indeed, performing the

above simulations to determine excitability threshold with either a

small cluster of initially excited cells (thus simulating a 2D, but

radially symmetric solution) or with an entire strip of initially

excited cells (thus simulating essentially the 1D dynamics) showed

negligible difference (S5 Figure).

Supporting Information

Figure S1 Determining speed of wave front for two
example waves. Black corresponds to earlier times, and orange to

later. At the latest time the wave is active, the wave front which

connects the most distal point from the initiation point is tracked.

Starting at this final point and moving backward in units of 0.5 s, the

next closest active point to the current one draws the wave front

trajectory in reverse, as demonstrated in A. This process does not

make sense if a wave is the result of a collision, as shown in B. Waves

that are involved in a collision have more than one start point

(additional start point shown as single green circle), meaning there is

ambiguity in how to apply the wave speed algorithm. The wave speeds

for these waves (shown in right subplot) are not counted in our analysis.

(EPS)

Figure S2 Effect of thresholds and smoothing on wave
labeling. Snapshot of a thresholded and subsequently labeled

wave from voltage data A. without B. and with C. smoothing.

Threshold was set to 260 mV to produce wave forms which, by

eye, match waves shown in voltage data.

(EPS)

Figure S3 Effect of varying sAHP sensitivity parameter
a. Statistics following 5000 s of simulation of model with indicated

values of a – interwave interval; wave speed distribution; and

mean wave size. Comparison to Fig. 5 shows varying a has a

similar effect to varying the timescale tS . Note that varying the

sAHP sensitivity parameter a or varying the rate of activation

parameter c have identical impact on the model – as can be seen

from the dimensional analysis summaryized in Table 2.

(EPS)

Figure S4 Distributions of wave duration (lifetime).
Distribution of wave duration on logarithmic scale following

5000 s simulation on a 1286128 grid point domain for specified

values of tS and f {1. For reference, the dotted black curve shows

a theoretical distribution of the form p(s)*s{a for a~{1:2 as

observed in large-scale simulations of the DS-FFM model [54].

Comparison to Fig. 6 shows that SOC is not predicted for the

parameters drawn in green, which indeed is clearly sub-critical.

(EPS)

Figure S5 Determination of excitability thresholds
through numerical simulation, comparison between 1D
and 2D simulations. Curves show parameter values for which

medium is excitable, estimated through numerical simulation of the

model as described in ‘Models: Excitability thresholds’. Computa-

tions are performed with an initial condition of either an excited

strip of SACs A., or an excited point of SACs B., thus simulating the

1D and 2D radially symmetric systems, respectively. Computed for

three different values of time-scale parameter E. The figures are

identical, indicating that the excitability thresholds obtained from

analysis of the 1D system can also apply to a 2D domain.

(EPS)

Movie S1 500 s of simulation of retinal waves model.
Simulation of 42 mm of retina played at 106 speed. Left panel to

right panel: voltage potential (V ), sAHP variable (S), and

acetylcholine variable (A). A higher resolution version can be

found at https://github.com/benlansdell/retinalwaves.

(MP4)
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